Meromorphic functions and their applications

亚纯函数及其应用

基本信息

  • 批准号:
    1067886
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Abstract.The proposers intend to continue their study of meromorphic functions using the methods of geometric theory of functions and topology, the approach which already brought significant results in their previous research. All problems in this proposal arise naturally from the results of the previous research of the proposers funded by NSF. The proposers intend to concentrate on the following specific problems: geometry and topology of real and complex spectral loci of the one-dimensional Schrödinger operators with polynomial and rational potentials; singularities of implicit analytic functions defined by entire relations; general properties of certain classes of meromorphic functions occurring in holomorphic dynamics and in spectral theory of the Schrödinger operators; polynomial approximation of discontinuous functions on systems of intervals. Proposed research will expand our understanding of solutions of transcendental equations emerging in analysis and mathematical physics.Meromorphic functions constitute the most basic class of functions used in mathematics and most of its applications. In addition to elementary functions like the exponent, cosine and tangent, this class includes higher transcendental functions, indispensable in physics and engineering. Previous work of the authors on this subject already found important applications in control theory, material science, computer science, signal processing, mathematical physics and astrophysics. This proposal contains several problems of the function theory motivated by quantum mechanics, and the proposers expect their results to yield deeper understanding of this fundamental physical theory. The PI and coPI will also work with graduate students on research related to the project.
摘要:提出者打算继续他们的亚纯函数的研究,使用几何理论的功能和拓扑的方法,已经带来了显着的成果,在他们以前的研究方法。该提案中的所有问题都是由NSF资助的提案人先前研究的结果自然产生的。提出者打算集中讨论下列具体问题:具有多项式和有理位势的一维薛定谔算子的真实的和复谱轨迹的几何和拓扑;由整关系定义的隐解析函数的奇异性;在全纯动力学和薛定谔算子谱理论中出现的某些亚纯函数类的一般性质;区间系上不连续函数的多项式逼近亚纯函数是数学中最基本的一类函数,也是数学中最重要的一类函数,它的应用范围非常广泛。除了像指数、余弦和正切这样的初等函数外,这类函数还包括在物理学和工程学中不可或缺的高等超越函数。作者以前在这个问题上的工作已经在控制理论,材料科学,计算机科学,信号处理,数学物理和天体物理学中找到了重要的应用。这个提议包含了由量子力学激发的函数理论的几个问题,提议者希望他们的结果能对这个基本物理理论产生更深入的理解。PI和coPI还将与研究生一起进行与该项目相关的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandre Eremenko其他文献

On the Shapes of Rational Lemniscates
  • DOI:
    10.1007/s00039-025-00704-2
  • 发表时间:
    2025-02-18
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Christopher J. Bishop;Alexandre Eremenko;Kirill Lazebnik
  • 通讯作者:
    Kirill Lazebnik
Lyubich: Dynamical properties of some classes of entire functions
Lyubich:整个函数的某些类的动态属性
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandre Eremenko;M. Yu
  • 通讯作者:
    M. Yu
Extremal holomorphic curves for defect relations
  • DOI:
    10.1007/bf02819454
  • 发表时间:
    1998-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Alexandre Eremenko
  • 通讯作者:
    Alexandre Eremenko
On the riesz charge of the lower envelope of δ-subharmonic functions
  • DOI:
    10.1007/bf01789240
  • 发表时间:
    1992-06-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Alexandre Eremenko;Bent Fuglede;Mikhail Sodin
  • 通讯作者:
    Mikhail Sodin
Non-Algebraic Quadrature Domains
  • DOI:
    10.1007/s11118-012-9297-6
  • 发表时间:
    2012-07-17
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Alexandre Eremenko;Erik Lundberg
  • 通讯作者:
    Erik Lundberg

Alexandre Eremenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandre Eremenko', 18)}}的其他基金

Geometric Methods in the Analytic Theory of Differential Equations
微分方程解析论中的几何方法
  • 批准号:
    1665115
  • 财政年份:
    2017
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Problems in geometric function theory
几何函数论问题
  • 批准号:
    1361836
  • 财政年份:
    2014
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Real meromorphic functions
实亚纯函数
  • 批准号:
    0555279
  • 财政年份:
    2006
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
  • 批准号:
    0244547
  • 财政年份:
    2003
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Geometric Theory of Meromorphic Functions
亚纯函数的几何理论
  • 批准号:
    0100512
  • 财政年份:
    2001
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Meromorphic Functions and Holomorphic Curves
亚纯函数和全纯曲线
  • 批准号:
    9800084
  • 财政年份:
    1998
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Meromorphic Functions
数学科学:亚纯函数
  • 批准号:
    9500636
  • 财政年份:
    1995
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Morphology control of silver dendrites grown under light and study of their optical functions
光下银枝晶的形貌控制及其光学功能研究
  • 批准号:
    23H01881
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Evaluating homeostatic functions of the interaction bitter and astringent tastes and their receptors
评估苦涩味及其受体相互作用的稳态功能
  • 批准号:
    23H02166
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ecological functions of host lineage-specific symbiosis of Daphnia species and their molecular mechanisms
水蚤宿主谱系特异性共生的生态功能及其分子机制
  • 批准号:
    23H02548
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of Characteristics and Functions of Rituals of Japanese New Religions : To Reconsider Their Worldviews and Hierarchies
日本新宗教仪式的特征和功能的阐释:重新考虑他们的世界观和等级制度
  • 批准号:
    22KJ1273
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
  • 批准号:
    23KJ0394
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Coded Lands: The Anthropocentrism of Videogame Environments and their Functions
编码之地:电子游戏环境及其功能的人类中心主义
  • 批准号:
    2890549
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Studentship
Elucidation of the physiological functions of bacterial membrane phospholipids and their functional expression mechanisms using acetic acid bacteria as a model
以醋酸菌为模型阐明细菌膜磷脂的生理功能及其功能表达机制
  • 批准号:
    23K13874
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of the effects of STB/HAP1 in modulating/protecting steroid hormone functions by acting on their receptors in the brain using genetically-modified mice
使用转基因小鼠阐明 STB/HAP1 通过作用于大脑中的受体来调节/保护类固醇激素功能
  • 批准号:
    23K19456
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploration for quntum functions of hexagonal Boron Nitride by their defect control
通过缺陷控制探索六方氮化硼的量子功能
  • 批准号:
    23H02052
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了