Geometric Theory of Meromorphic Functions
亚纯函数的几何理论
基本信息
- 批准号:0100512
- 负责人:
- 金额:$ 25.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2006-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposer intends to continue his study of geometric questions in the theory of meromorphic functions, using the new techniques developed in his previous work. The main directions of the proposed research are the following.a) Questions related to Bloch's theorem and the Type Problem ofa simply connected Riemann surface, especially the relationsbetween the conformal type of a surface and its integral curvature.b) Problems of geometric function theory arising in real algebraicgeometry. More specifically, it includes counting real solutionsof certain systems of algebraic equations of geometric origin, whichhave important applications in linear control theory. c) Generalization of results of geometric function theory toquasiregular maps in spaces of arbitrary dimension.d) Normality criteria for families of holomorphic curves in projectivespaces.One of the basic questions in mathematics and its applications iswhether a given equation or a system of equations has solutions,how many, and where are they located. In the theory of meromorphic functionsone studies these questions for equations of the typef(z)=a, where a is a given complex number and f a given meromorphic function.The class of meromorphic functions includes elementary functions,such as rational, exponential and trigonometric ones, as well as the specialfunctions, a. k. a. higher transcendental functions, such as theGamma function, Airy functions, elliptic functions and so on.Most functions arising in applications of mathematics belong tothis class. In modern mathematics, questions about solvabilityof equations are usually formulated in geometric language, which makesthe results appealing to our geometric intuition. The logic of development of mathematics and its applicationsrequire an extension of results to vector-valued functions knownas ``holomorphic curves''. The proposer plans to continue his studyof geometric theory of meromorphic functions and holomorphic curves.A part of the proposal is related to existence of real solutions, which isby far more subtle than the existence of complex solutions, which are usuallystudied. This part is inspired by the so-called "pole placement problem", which is a major unsolved mathematicalproblem in control theory of linear systems. The results in this areawill have implications for the design of complicated automatic control systems. These results would establish limitations on the possibility tocontrol a system of given size by a control device of certain class.
The proposer intends to continue his study of geometric questions in the theory of meromorphic functions, using the new techniques developed in his previous work. The main directions of the proposed research are the following.a) Questions related to Bloch's theorem and the Type Problem ofa simply connected Riemann surface, especially the relationsbetween the conformal type of a surface and its integral curvature.b) Problems of geometric function theory arising in real algebraicgeometry. More specifically, it includes counting real solutionsof certain systems of algebraic equations of geometric origin, whichhave important applications in linear control theory. c) Generalization of results of geometric function theory toquasiregular maps in spaces of arbitrary dimension.d) Normality criteria for families of holomorphic curves in projectivespaces.One of the basic questions in mathematics and its applications iswhether a given equation or a system of equations has solutions,how many, and where are they located. In the theory of meromorphic functionsone studies these questions for equations of the typef(z)=a, where a is a given complex number and f a given meromorphic function.The class of meromorphic functions includes elementary functions,such as rational, exponential and trigonometric ones, as well as the specialfunctions, a. k. a. higher transcendental functions, such as theGamma function, Airy functions, elliptic functions and so on.Most functions arising in applications of mathematics belong tothis class. In modern mathematics, questions about solvabilityof equations are usually formulated in geometric language, which makesthe results appealing to our geometric intuition. The logic of development of mathematics and its applicationsrequire an extension of results to vector-valued functions knownas ``holomorphic curves''. The proposer plans to continue his studyof geometric theory of meromorphic functions and holomorphic curves.A part of the proposal is related to existence of real solutions, which isby far more subtle than the existence of complex solutions, which are usuallystudied. This part is inspired by the so-called "pole placement problem", which is a major unsolved mathematicalproblem in control theory of linear systems. The results in this areawill have implications for the design of complicated automatic control systems. These results would establish limitations on the possibility tocontrol a system of given size by a control device of certain class.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandre Eremenko其他文献
On the Shapes of Rational Lemniscates
- DOI:
10.1007/s00039-025-00704-2 - 发表时间:
2025-02-18 - 期刊:
- 影响因子:2.500
- 作者:
Christopher J. Bishop;Alexandre Eremenko;Kirill Lazebnik - 通讯作者:
Kirill Lazebnik
Lyubich: Dynamical properties of some classes of entire functions
Lyubich:整个函数的某些类的动态属性
- DOI:
- 发表时间:
1992 - 期刊:
- 影响因子:0
- 作者:
Alexandre Eremenko;M. Yu - 通讯作者:
M. Yu
Extremal holomorphic curves for defect relations
- DOI:
10.1007/bf02819454 - 发表时间:
1998-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Alexandre Eremenko - 通讯作者:
Alexandre Eremenko
On the riesz charge of the lower envelope of δ-subharmonic functions
- DOI:
10.1007/bf01789240 - 发表时间:
1992-06-01 - 期刊:
- 影响因子:0.800
- 作者:
Alexandre Eremenko;Bent Fuglede;Mikhail Sodin - 通讯作者:
Mikhail Sodin
Non-Algebraic Quadrature Domains
- DOI:
10.1007/s11118-012-9297-6 - 发表时间:
2012-07-17 - 期刊:
- 影响因子:0.800
- 作者:
Alexandre Eremenko;Erik Lundberg - 通讯作者:
Erik Lundberg
Alexandre Eremenko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandre Eremenko', 18)}}的其他基金
Geometric Methods in the Analytic Theory of Differential Equations
微分方程解析论中的几何方法
- 批准号:
1665115 - 财政年份:2017
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
Problems in geometric function theory
几何函数论问题
- 批准号:
1361836 - 财政年份:2014
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
Meromorphic functions and their applications
亚纯函数及其应用
- 批准号:
1067886 - 财政年份:2011
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244547 - 财政年份:2003
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Meromorphic Functions and Holomorphic Curves
亚纯函数和全纯曲线
- 批准号:
9800084 - 财政年份:1998
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Mathematical Sciences: Meromorphic Functions
数学科学:亚纯函数
- 批准号:
9500636 - 财政年份:1995
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Value distribution theory of meromorphic functions based on diffusion processes
基于扩散过程的亚纯函数值分布理论
- 批准号:
24540192 - 财政年份:2012
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of complex functional equations by means of theory of meromorphic functions
利用亚纯函数理论研究复函数方程
- 批准号:
22540233 - 财政年份:2010
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value distribution theory of meromorphic maps, especially on unicity problems and deficiencies on linear systems
亚纯映射的值分布理论,特别是线性系统的单一性问题和缺陷
- 批准号:
21540205 - 财政年份:2009
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Value distribution theory of meromorphic mappings concerningdefects and its application to uniqueness theorems
缺陷亚纯映射的值分布理论及其在唯一性定理中的应用
- 批准号:
18540156 - 财政年份:2006
- 资助金额:
$ 25.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
U.S.-Polish Collaborative Research: Ergodic Theory and Geometry of Transcendental Entire and Meromorphic Functions
美波合作研究:遍历理论和超越整体和亚纯函数的几何
- 批准号:
0306004 - 财政年份:2003
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
Mathematical Sciences: Meromorphic Solutions of DifferentialEquations and Spectral Theory
数学科学:微分方程的亚纯解和谱理论
- 批准号:
9401816 - 财政年份:1994
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
The Theory of Entire and Meromorphic Functions
整体函数和亚纯函数理论
- 批准号:
8102123 - 财政年份:1981
- 资助金额:
$ 25.41万 - 项目类别:
Continuing Grant
Some Problems in the Theory of Meromorphic Functions
亚纯函数理论中的一些问题
- 批准号:
7308854 - 财政年份:1973
- 资助金额:
$ 25.41万 - 项目类别:
Standard Grant
SOME PROBLEMS IN THE THEORY OF MEROMORPHIC FUNCTIONS
亚形函数理论中的一些问题
- 批准号:
7353696 - 财政年份:1973
- 资助金额:
$ 25.41万 - 项目类别: