Least Squares PGD Mimetic Spectral Element Methods for Systems of First-Order PDEs

一阶偏微分方程组的最小二乘 PGD 模拟谱元方法

基本信息

  • 批准号:
    2316393
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Many mathematical models that describe problems in science and engineering are defined in high dimensional spaces. Examples can be found in a diverse range of application areas such as quantum chemistry, kinetic theory descriptions of materials (including complex fluids), the chemical master equation governing many biological processes (e.g. cell signalling) and models of financial mathematics (e.g. option pricing). The mathematical description of these problems is invariably in terms of a system of partial differential equations (PDEs). For practical problems these systems do not possess analytical solutions and therefore it is necessary to solve them numerically. It is important that the system of algebraic equations obtained as a result of discretisation is a compatible (mimetic) and physically consistent system so that the numerical approximation is an accurate representation of the physical solution to the problem. The governing systems of PDEs is written in terms of an equivalent system of first-order differential equations which is subsequently formulated in terms of a least squares functional. Effectively the solution of a system of PDEs is converted into an unconstrained minimisation problem. The exceptional stability of least-squares formulations has led to the widespread use of low-order finite elements in their discretization. Unfortunately, these methods are only approximately conservative, which generally leads to violation of fundamental physical properties, such as loss of mass conservation. In many cases this drawback can outweigh the potential advantages of least squares methods. As a result, improving the conservation properties of least-squares methods is crucially important.
许多描述科学和工程问题的数学模型都是在高维空间中定义的。例子可以在各种应用领域中找到,例如量子化学,材料(包括复杂流体)的动力学理论描述,控制许多生物过程的化学主方程(例如细胞信号传导)和金融数学模型(例如期权定价)。这些问题的数学描述总是用偏微分方程组(PDEs)来表示。对于实际问题,这些系统不具有解析解,因此有必要进行数值求解。重要的是,由于离散化而得到的代数方程组是兼容的(模拟的)和物理上一致的系统,以便数值近似是问题物理解的准确表示。偏微分方程的控制系统是用一阶微分方程的等效系统来表示的,然后用最小二乘泛函来表示。有效地将微分方程系统的解转化为无约束最小化问题。最小二乘公式的特殊稳定性导致了低阶有限元在其离散化中的广泛应用。不幸的是,这些方法只是近似保守的,这通常会导致违反基本的物理性质,例如失去质量守恒。在许多情况下,这个缺点可能会超过最小二乘法的潜在优点。因此,提高最小二乘方法的守恒性是至关重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Statistics through the Sum of Squares Lens
职业:通过平方和透镜进行统计
  • 批准号:
    2238080
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Adaptation of Dynamic Weighted Ordinary Least Squares Regression in the Presence of Interference Networks
存在干扰网络时动态加权普通最小二乘回归的自适应
  • 批准号:
    569021-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Latin squares and strongly regular graphs
拉丁方和强正则图
  • 批准号:
    572186-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Optimal High-Dimensional Estimators Using Sum-of-Squares Proof Systems
职业:使用平方和证明系统的最优高维估计器
  • 批准号:
    2143246
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Min-max problems related to Steenrod squares
与 Steenrod 平方相关的最小-最大问题
  • 批准号:
    572642-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Study of Advanced Least Squares Estimation Methods to Support Spatial Data Infrastructure
支持空间数据基础设施的先进最小二乘估计方法研究
  • 批准号:
    534146-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A divide and conquer attack on challenging least squares problems
针对具有挑战性的最小二乘问题的分而治之攻击
  • 批准号:
    EP/W009676/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Matrix completion using de-biased alternating least squares
使用去偏交替最小二乘法完成矩阵
  • 批准号:
    566268-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了