Homogenization of Elliptic and Parabolic Partial Differential Equations

椭圆和抛物型偏微分方程的齐次化

基本信息

  • 批准号:
    1700028
  • 负责人:
  • 金额:
    $ 1.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The mathematical theory of homogenization identifies the average, macroscopic behavior of a phenomenon that is subject to microscopic effects. For example, one may be interested in determining the general properties of a porous material, or predicting the evolution of a substance traveling through a heterogeneous medium. Such phenomena are typically modeled by partial differential equations that depend on microscopic length-scales describing the heterogeneities. Homogenization is the process of approximating such detailed equations with smoother, macroscopic models. The principal investigator will focus on the subject of so-called stochastic homogenization, in which the microscopic effects are randomly distributed. Such models are significant for developing a robust framework to represent "typical" physical settings that are subject to uncertainty. Generally speaking, the study of homogenization combines tools from several different areas of mathematics, including analysis, partial differential equations, dynamical systems, and probability theory. The principal investigator is committed to using collaborative approaches to the project. This flexible perspective promotes a unified understanding of the physical phenomena, as well as enhancing the theory of the relevant equations. The principal investigator will focus her efforts on two main classes of elliptic and parabolic partial differential equations: (a) non-divergence-form equations, which describe general diffusion processes and are frequently used in the study of stochastic control theory and geometry; and (b) reaction-diffusion equations, solutions of which represent front-like evolution and serve as the primary mathematical models in chemical kinetics, combustion, and biology. The research will encompass proposes a variety of sub-projects that are motivated by the following two objectives: (1) to show that homogenization is applicable to a broader class of partial differential equations than previously expected; and (2) to obtain more specific information about the process of homogenization than is currently known, such as error estimates or properties of the effective behavior. Questions posed initially in stochastic homogenization typically have equivalent formulations in probability theory. Consequently, the research may lead to progress in the study of random walks in random environments, first passage percolation, and large deviation principles.
均质化的数学理论确定了受微观影响的现象的平均宏观行为。例如,人们可能对确定多孔材料的一般性质或预测物质在非均质介质中的演变感兴趣。这种现象通常用偏微分方程来模拟,偏微分方程依赖于描述非均质性的微观长度尺度。均匀化是用更光滑的宏观模型逼近这些详细方程的过程。首席研究员将集中研究所谓的随机均质化问题,即微观效应是随机分布的。这样的模型对于建立一个健壮的框架来表示受不确定性影响的“典型”物理环境具有重要意义。一般来说,均匀化的研究结合了几个不同数学领域的工具,包括分析、偏微分方程、动力系统和概率论。首席研究员承诺在项目中采用合作的方式。这种灵活的视角促进了对物理现象的统一理解,并加强了相关方程的理论。首席研究员将集中精力研究两类主要的椭圆型和抛物型偏微分方程:(a)非发散型方程,它描述一般的扩散过程,经常用于随机控制理论和几何的研究;(b)反应-扩散方程,其解代表前沿进化,是化学动力学、燃烧和生物学的主要数学模型。该研究将包括由以下两个目标驱动的各种子项目的建议:(1)表明均匀化适用于比先前预期的更广泛的偏微分方程类别;(2)获得比目前已知的关于均质化过程的更具体的信息,例如误差估计或有效行为的性质。最初在随机均匀化中提出的问题通常在概率论中具有等效的公式。因此,该研究可能会导致随机环境下的随机行走、第一通道渗透和大偏差原理的研究取得进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jessica Lin其他文献

Synthesis and evaluation of a novel vancomycin-infused, biomimetic bone graft using a rat model of spinal implant-associated infection
使用脊柱植入物相关感染的大鼠模型合成和评估新型万古霉素输注仿生骨移植物
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christian J. Rajkovic;Jovanna A. Tracz;Trevor DeMordaunt;A. D. Davidar;Alexander Perdomo;Brendan F. Judy;Kevin Yang Zhang;Vaughn N. Hernandez;Jessica Lin;Julianna L. Lazzari;Ethan Cottrill;Timothy F. Witham
  • 通讯作者:
    Timothy F. Witham
Evaluation and workup of immunodeficiencies in recurrent acute rhinosinusitis: A scoping review
复发性急性鼻窦炎免疫缺陷的评估和检查:范围界定综述
Model-Based Insulin Sensitivity as a Sepsis Diagnostic in Critical Care
基于模型的胰岛素敏感性作为重症监护中脓毒症的诊断
  • DOI:
    10.1177/193229680800200317
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    5
  • 作者:
    A. Blakemore;Sheng;A. L. Le Compte;G. Shaw;X. Wong;Jessica Lin;T. Lotz;C. Hann;J. Chase
  • 通讯作者:
    J. Chase
Comparison of adaptive and sliding-scale glycaemic control in critical care and the impact of nutritional inputs
重症监护中适应性血糖控制和滑动血糖控制的比较以及营养投入的影响
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Wong;J. Chase;G. Shaw;C. Hann;Jessica Lin;T. Lotz
  • 通讯作者:
    T. Lotz
Efficacy of nanoparticle-encapsulated BCNU delivery in a pCPP:SA scaffold for treatment of Glioblastoma Multiforme
pCPP:SA 支架中纳米颗粒封装的 BCNU 递送治疗多形性胶质母细胞瘤的功效
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bunis;C. Card;Jessica Lin;S. Rhee
  • 通讯作者:
    S. Rhee

Jessica Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jessica Lin', 18)}}的其他基金

III: Small: Collaborative Research: Finding and Exploiting Hierarchical Structure in Time Series Using Statistical Language Processing Methods
III:小:协作研究:使用统计语言处理方法查找和利用时间序列中的层次结构
  • 批准号:
    1218325
  • 财政年份:
    2012
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Continuing Grant

相似海外基金

Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
  • 批准号:
    2236491
  • 财政年份:
    2023
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
  • 批准号:
    DP220101816
  • 财政年份:
    2022
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2022
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2021
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2020
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2020
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
  • 批准号:
    20KK0057
  • 财政年份:
    2020
  • 资助金额:
    $ 1.37万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了