Homogenization of Elliptic and Parabolic Partial Differential Equations

椭圆和抛物型偏微分方程的齐次化

基本信息

  • 批准号:
    RGPIN-2018-06371
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Elliptic Partial Differential Equations; Homogenization; Nondivergence-form Equations; Parabolic Partial Differential Equations; Reaction-Diffusion Equations; Stochastic Homogenization
椭圆型偏微分方程组;齐次化;无散度型方程;抛物型偏微分方程;反应扩散方程;随机齐次化

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin, Jessica其他文献

Developing a platform to evaluate and assess the security of wearable devices
  • DOI:
    10.1016/j.dcan.2018.10.009
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Hale, Matthew L.;Lotfy, Kerolos;Lin, Jessica
  • 通讯作者:
    Lin, Jessica
Modeling the glucose regulatory system in extreme preterm infants
Utilization and Delivery of Specialty Palliative Care in the ICU: Insights from the Palliative Care Quality Network.
  • DOI:
    10.1016/j.jpainsymman.2022.03.011
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Chapman, Allyson Cook;Lin, Joseph A.;Cobert, Julien;Marks, Angela;Lin, Jessica;O'Riordan, David L.;Pantilat, Steven Z.
  • 通讯作者:
    Pantilat, Steven Z.
Atypical Anorexia in Youth: Cautiously Bridging the Treatment Gap.
  • DOI:
    10.3390/children9060837
  • 发表时间:
    2022-06-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Freizinger, Melissa;Recto, Michelle;Jhe, Grace;Lin, Jessica
  • 通讯作者:
    Lin, Jessica
Stochastic modelling of insulin sensitivity and adaptive glycemic control for critical care

Lin, Jessica的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin, Jessica', 18)}}的其他基金

Partial Differential Equations and Probability
偏微分方程和概率
  • 批准号:
    CRC-2018-00154
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Partial Differential Equations And Probability
偏微分方程和概率
  • 批准号:
    CRC-2018-00154
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Partial Differential Equations and Probability
偏微分方程和概率
  • 批准号:
    CRC-2018-00154
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Partial Differential Equations and Probability
偏微分方程和概率
  • 批准号:
    CRC-2018-00154
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Canada Research Chairs
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    DGECR-2018-00073
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
  • 批准号:
    2349846
  • 财政年份:
    2024
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
CAREER: Elliptic and Parabolic Partial Differential Equations
职业:椭圆和抛物型偏微分方程
  • 批准号:
    2236491
  • 财政年份:
    2023
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Continuing Grant
Singular solutions for nonlinear elliptic and parabolic equations
非线性椭圆方程和抛物方程的奇异解
  • 批准号:
    DP220101816
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Projects
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity Formations in Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物线方程中的奇异性形成
  • 批准号:
    RGPIN-2018-03773
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Homogenization of Elliptic and Parabolic Partial Differential Equations
椭圆和抛物型偏微分方程的齐次化
  • 批准号:
    RGPIN-2018-06371
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
  • 批准号:
    20KK0057
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Qualitative Properties of Solutions of Nonlinear Elliptic and Parabolic Equations
非线性椭圆方程和抛物方程解的定性性质
  • 批准号:
    1856491
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了