Model Theory and Differential Equations

模型理论和微分方程

基本信息

  • 批准号:
    1700095
  • 负责人:
  • 金额:
    $ 14.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This project centers on algebraic differential equations and model theory. Differential equations are at the heart of modern mathematics and its applications in other sciences. Model theory is a part of mathematical logic in which objects known as definable sets are studied. The notion of a definable set is flexible, changing as one works in different mathematical settings. In the area of differential algebra, definable sets are closely linked with differential equations, providing a connection between the two subjects. This project plans to exploit that link to advance the knowledge of both fields. The project also seeks applications in other areas of mathematics, primarily number theory.This research project addresses problems in the model theory of fields with operators. First, the investigator will generalize his work on the differential algebra of the j-function to understand the differential equations satisfied by analytic covering maps associated with various Shimura varieties. This line of work is expected to have number theoretic consequences related to special-point conjectures as it did in the case of modular curves. The project will also investigate several finiteness results in differential algebra; this line of work is expected to have consequences on effective bounds in number theory and in computational differential algebra. The project aims to develop various aspects of the model theory of supersimple and superstable groups as a generalization of recent work in differential algebraic and difference algebraic groups. The project will investigate the classification of disintegrated strongly minimal sets in differentially closed fields. This work seeks to answer a fundamental question about differential equations: what are the possible structures given by the differential algebraic relations between solutions to a fixed differential equation? Finally, this project aims to adapt and generalize results from algebraic foliations and vector fields for application in differential algebraic geometry.
该项目以代数微分方程和模型理论为中心。微分方程是现代数学及其在其他科学中应用的核心。模型论是数理逻辑的一部分,其中研究称为可定义集合的对象。可定义集合的概念是灵活的,随着人们在不同的数学环境中工作而变化。在微分代数领域,可定义集与微分方程密切相关,在两个学科之间提供了联系。该项目计划利用这一联系来推进这两个领域的知识。该项目还寻求在其他数学领域的应用,主要是数论。该研究项目解决了算子域模型论中的问题。首先,研究者将概括他在 j 函数微分代数方面的工作,以理解与各种 Shimura 品种相关的解析覆盖图所满足的微分方程。预计这一工作将产生与特殊点猜想相关的数论结果,就像在模曲线的情况下一样。该项目还将研究微分代数中的几个有限性结果;这一工作预计将对数论和计算微分代数的有效界限产生影响。该项目旨在发展超简单群和超稳定群模型理论的各个方面,作为微分代数和差分代数群最近工作的概括。该项目将研究微分闭域中可分解的强极小集的分类。这项工作旨在回答有关微分方程的一个基本问题:固定微分方程解之间的微分代数关系给出的可能结构是什么?最后,该项目旨在调整和推广代数叶状结构和向量场的结果,以应用于微分代数几何。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MODEL THEORY AND COMBINATORICS OF BANNED SEQUENCES
禁止序列的模型理论和组合学
  • DOI:
    10.1017/jsl.2019.35
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    CHASE, HUNTER;FREITAG, JAMES
  • 通讯作者:
    FREITAG, JAMES
Finiteness theorems on hypersurfaces in partial differential-algebraic geometry
  • DOI:
    10.1016/j.aim.2017.04.008
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Freitag;Rahim Moosa
  • 通讯作者:
    J. Freitag;Rahim Moosa
Bounds in query learning
查询学习的界限
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chase, Hunter;Freitag, James
  • 通讯作者:
    Freitag, James
Effective definability of Kolchin polynomials
Kolchin 多项式的有效可定义性
MODEL THEORY AND MACHINE LEARNING
模型理论和机器学习
  • DOI:
    10.1017/bsl.2018.71
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    CHASE, HUNTER;FREITAG, JAMES
  • 通讯作者:
    FREITAG, JAMES
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Freitag其他文献

Applications of Littlestone dimension to query learning and to compression
Littlestone 维度在查询学习和压缩中的应用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hunter Chase;James Freitag;L. Reyzin
  • 通讯作者:
    L. Reyzin
Completeness in partial differential algebraic geometry
  • DOI:
    10.1016/j.jalgebra.2014.07.025
  • 发表时间:
    2014-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    James Freitag
  • 通讯作者:
    James Freitag

James Freitag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Freitag', 18)}}的其他基金

CAREER: Applied Model Theory
职业:应用模型理论
  • 批准号:
    1945251
  • 财政年份:
    2020
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
Pure and Applied Model Theory
纯粹和应用模型理论
  • 批准号:
    1834578
  • 财政年份:
    2018
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1204510
  • 财政年份:
    2012
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Model Theory of Valued Differential Fields
值微分场模型论
  • 批准号:
    2154086
  • 财政年份:
    2022
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
Construction of a new mathematical model of grain boundary motion and development in the theory of differential equations
晶界运动新数学模型的构建及微分方程理论的发展
  • 批准号:
    22K03376
  • 财政年份:
    2022
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
  • 批准号:
    1760413
  • 财政年份:
    2018
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
  • 批准号:
    1760212
  • 财政年份:
    2018
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
  • 批准号:
    1760448
  • 财政年份:
    2018
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
Model Theory and Differential and Difference Equations
模型理论与微分和差分方程
  • 批准号:
    1700336
  • 财政年份:
    2017
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
  • 批准号:
    1500920
  • 财政年份:
    2015
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Standard Grant
Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
  • 批准号:
    1363372
  • 财政年份:
    2014
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Continuing Grant
Model theory, algebra, and differential equations
模型理论、代数和微分方程
  • 批准号:
    EP/I002294/1
  • 财政年份:
    2011
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Research Grant
Model Theory of some Differential Equations arising from Diophantine Geometry
丢番图几何中一些微分方程的模型论
  • 批准号:
    EP/D065747/2
  • 财政年份:
    2009
  • 资助金额:
    $ 14.71万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了