Model Theory of Generalized Differential Equations and Diophantine Geometry
广义微分方程模型论与丢番图几何
基本信息
- 批准号:1363372
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of a study of differential and difference equations and their generalizations through the lens of model theory in the sense of mathematical logic, attacks on difficult problems in arithmetic dynamics using multiple model theoretic ideas, and a fundamental investigation into decidability in geometry and arithmetic. In their many applications, differential and difference equations describe the evolution and dynamics of complex systems. Various methods, computational and analytic, for example, are commonly employed to understand and solve these equations. With this project, ideas from algebra and logic, especially related to the principles of definability and tameness of structure, will be used to understand differential and difference equations. This basic research should have consequences in mathematics and the sciences broadly due to the importance of differential and difference equations in the applications of mathematics to the sciences. Concretely, with regards to differential equations, this project will extend the fundamental model theoretic results about differential fields to the class of D-fields in a more expansive sense. Secondly, the project involves a study of the fine structure of definability and dependence in D-fields. In particular, the project will extend the Zilber trichotomy (or, at least, results of a similar flavor) to infinite dimensional types, and, thus, specializing to classical theories, to underdetermined difference-differential, partial differential, and Hasse differential equations. Moreover, a goal of the project is an explicit characterization the induced structure on sets with trivial forking geometry. Thirdly, the project will develop a theory of specializations of D-rings through a model theory of valued D-fields. Fourthly, the project includes a development of general D-Galois theories based on multiple model theoretic perspectives. Finally in connection to D-fields, the project includes an ambitious application of the theory of D-fields which may have transformative consequences; that is, to realize Borger's F-1-geometry as the study of finite dimensional definable sets relative to a certain theory of D-rings. With regards to diophantine geometry, the project will address Zhang's dense orbit conjecture and the dynamical Mordell-Lang through the model theory of difference fields and methods from o-minimality. The project includes a program establish the decidability of complicated fragments of the theory of C(t), the field of rational functions over the complex numbers.
该项目包括通过数理逻辑意义上的模型理论视角研究微分方程和差分方程及其推广,利用多模型理论思想解决算术动力学中的难题,并对几何和算术中的可判定性进行基础研究。 在许多应用中,微分方程和差分方程描述了复杂系统的演化和动力学。 例如,通常采用各种方法(例如计算方法和分析方法)来理解和求解这些方程。通过这个项目,代数和逻辑的思想,特别是与结构的可定义性和驯服性原理相关的思想,将被用来理解微分方程和差分方程。 由于微分方程和差分方程在数学科学应用中的重要性,这项基础研究应该对数学和科学产生广泛的影响。具体来说,对于微分方程,本项目将微分场的基本模型理论结果扩展到更广泛意义上的D场类。其次,该项目涉及 D 域中可定义性和依赖性的精细结构的研究。特别是,该项目将把 Zilber 三分法(或者至少是类似风格的结果)扩展到无限维类型,从而专门研究经典理论、欠定差分微分方程、偏微分方程和哈斯微分方程。此外,该项目的目标是明确表征具有简单分叉几何形状的集合上的诱导结构。第三,该项目将通过有价值的 D 场模型理论开发 D 环专业化理论。第四,该项目包括基于多模型理论视角的一般 D-Galois 理论的发展。最后,关于 D 场,该项目包括对 D 场理论的雄心勃勃的应用,这可能会产生变革性的后果;也就是说,将博格的 F-1 几何实现为相对于某种 D 环理论的有限维可定义集合的研究。在丢番图几何方面,该项目将通过差分场模型理论和o-极小性方法来解决张的稠密轨道猜想和动力学Mordell-Lang。 该项目包括一个建立 C(t) 理论(复数有理函数域)复杂片段的可判定性的程序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Scanlon其他文献
Dialysis After Left Ventricular Assist Device Implantation
- DOI:
10.1016/j.cardfail.2020.09.442 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Annie Tsay;Lori Ober;Behzad Soleimani;Robert Dowling;Jordan Shouey;Omaima Ali;Thomas Scanlon;Robert Oblender;Howard Joel Eisen - 通讯作者:
Howard Joel Eisen
Groupes définissables dans des expansions de théories stables Ampleur et notions relatives
理论稳定和相关概念扩展中的可定义群体
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
C. Jordan;A. Martin;E. Bouscaren;David Evans;B. Poizat;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Public Key Cryptosystems Based on Drinfeld Modules Are Insecure
- DOI:
10.1007/s00145-001-0004-9 - 发表时间:
2001-04-09 - 期刊:
- 影响因子:2.200
- 作者:
Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algebraic equations on the adèlic closure of a Drinfeld module
- DOI:
10.1007/s11856-012-0072-6 - 发表时间:
2012-05-29 - 期刊:
- 影响因子:0.800
- 作者:
Dragos Ghioca;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Algorithm for finding new identifiable reparametrizations of parametric ODEs
寻找参数常微分方程新的可识别重参数化的算法
- DOI:
10.48550/arxiv.2310.03057 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
N. Meshkat;Alexey Ovchinnikov;Thomas Scanlon - 通讯作者:
Thomas Scanlon
Thomas Scanlon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Scanlon', 18)}}的其他基金
Travel: Model Theory of Valued Fields at CIRM
旅行:CIRM 有价值领域的模型理论
- 批准号:
2322918 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Algebraicity, Transcendence, and Decidability in Arithmetic and Geometry through Model Theory
通过模型理论研究算术和几何中的代数性、超越性和可判定性
- 批准号:
2201045 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
CAREER: Model Theory and Homogeneous Structures
职业:模型理论和齐次结构
- 批准号:
1848562 - 财政年份:2019
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Model Theory of Differential and Difference Equations with Applications
FRG:协作研究:微分方程和差分方程的模型理论及其应用
- 批准号:
1760413 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Model Theory: Connecting Algebraic, Analytic, and Diophantine Geometry Through Definability
模型理论:通过可定义性连接代数、解析和丢番图几何
- 批准号:
1800492 - 财政年份:2018
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Conference/Workshop: Trimester on Model Theory, Combinatorics, and Valued Fields; Spring, 2018; Paris, France
会议/研讨会:模型理论、组合学和值域的三个学期;
- 批准号:
1744167 - 财政年份:2017
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Arithmetic and algebraic differentiation: Witt vectors, number theory, and differential algebra
算术和代数微分:维特向量、数论和微分代数
- 批准号:
1502219 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Model Theory, Difference/Differential Equations, and Applications
模型理论、差分/微分方程和应用
- 批准号:
1500920 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Alternative ruin theory models:barrier stategies, generalized cramér-lundberg model
替代废墟理论模型:障碍策略、广义克拉姆-伦德伯格模型
- 批准号:
311958-2008 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Alternative ruin theory models:barrier stategies, generalized cramér-lundberg model
替代废墟理论模型:障碍策略、广义克拉姆-伦德伯格模型
- 批准号:
311958-2008 - 财政年份:2012
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Alternative ruin theory models:barrier stategies, generalized cramér-lundberg model
替代废墟理论模型:障碍策略、广义克拉姆-伦德伯格模型
- 批准号:
311958-2008 - 财政年份:2011
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Development of a generalized perturbation theory model for uncertainty propagation in lattice cell codes
格子码中不确定性传播的广义微扰理论模型的开发
- 批准号:
195505-2006 - 财政年份:2010
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Research in Model Theory: Generalized Amalgamation Properties
模型理论研究:广义合并性质
- 批准号:
0901315 - 财政年份:2009
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Alternative ruin theory models:barrier stategies, generalized cramér-lundberg model
替代废墟理论模型:障碍策略、广义克拉姆-伦德伯格模型
- 批准号:
311958-2008 - 财政年份:2009
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Development of a generalized perturbation theory model for uncertainty propagation in lattice cell codes
格子码中不确定性传播的广义微扰理论模型的开发
- 批准号:
195505-2006 - 财政年份:2009
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Development of a generalized perturbation theory model for uncertainty propagation in lattice cell codes
格子码中不确定性传播的广义微扰理论模型的开发
- 批准号:
195505-2006 - 财政年份:2008
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Alternative ruin theory models:barrier stategies, generalized cramér-lundberg model
替代废墟理论模型:障碍策略、广义克拉姆-伦德伯格模型
- 批准号:
311958-2008 - 财政年份:2008
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual
Development of a generalized perturbation theory model for uncertainty propagation in lattice cell codes
格子码中不确定性传播的广义微扰理论模型的开发
- 批准号:
195505-2006 - 财政年份:2007
- 资助金额:
$ 46万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




