Group actions on manifolds and complexes
流形和复形上的群作用
基本信息
- 批准号:RGPIN-2016-05111
- 负责人:
- 金额:$ 2.91万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the unifying principles in geometry is that complex systems, such as configurations of planets and stars can often be understood by means of their symmetries. Familiar symmetries include the rotations or reflections of solids in space and the Lorentz transformations of space-time. Discrete invariants and groups of symmetry of continuous motions are studied in algebraic topology, while geometric topology is concerned with the properties of differential manifolds, or higher-dimensional surfaces. Geometry and topology is a flourishing subject for research, with broad connections to other areas of mathematics, science and engineering.***Symmetries of manifolds are related to algebra and number theory through group theory, and to partial differential equations and analysis through differential forms. This proposal describes my recent work in three main areas (i) finite group actions on products of spheres, (ii) smooth and continuous group actions on 4-dimensional manifolds and their connections to gauge theory, and (ii) infinite discrete group actions on high-dimensional manifolds. The new projects include the development of a new coarse geometry for discrete group actions, a comparison of finite groups of differentiable transformations with those defined by algebraic equations on algebraic surfaces, and the study of dynamical and ergodic aspects of infinite groups of transformations on high-dimensional spheres. The goal in each case is to improve our understanding of the many roles of symmetry in mathematical and physical problems.***This research proposal provides many high-level opportunities for training of prospective graduate students and postgraduate researchers, whose future work will have a broad impact on our society. Mathematical research skills related to geometry are now widely used outside of the university setting, such as in the modelling of complex systems, in architectural design, in control theory for aerospace, and in computer vision. Fundamental research at Canadian universities is the key to promoting the next generation of mathematicians and scientists, who are vitally needed to lead the Canadian knowledge-based economy.******************
几何学中的一个统一原则是,复杂的系统,如行星和恒星的配置,通常可以通过它们的对称性来理解。熟悉的对称性包括空间中固体的旋转或反射以及时空的洛伦兹变换。离散不变量和连续运动的对称群在代数拓扑中进行研究,而几何拓扑则与微分流形或高维曲面的性质有关。几何和拓扑学是一个蓬勃发展的研究课题,与数学,科学和工程的其他领域有着广泛的联系。流形的对称性通过群论与代数和数论相关,通过微分形式与偏微分方程和分析相关。 这个建议描述了我最近在三个主要领域的工作:(i)有限群作用于球面的乘积,(ii)四维流形上的光滑和连续群作用及其与规范理论的联系,以及(ii)高维流形上的无限离散群作用。新的项目包括开发一个新的粗几何离散组行动,比较有限群的微分变换与代数方程定义的代数曲面,以及研究动态和遍历方面的无限群的变换高维领域。每种情况的目标都是提高我们对对称性在数学和物理问题中的许多作用的理解。*这项研究计划为未来的研究生和研究生研究人员的培训提供了许多高层次的机会,他们未来的工作将对我们的社会产生广泛的影响。与几何相关的数学研究技能现在广泛应用于大学环境之外,例如复杂系统的建模,建筑设计,航空航天控制理论和计算机视觉。加拿大大学的基础研究是促进下一代数学家和科学家的关键,他们是领导加拿大知识经济的关键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hambleton, Ian其他文献
TOWARD REDUCING HEALTH INFORMATION INEQUITIES IN THE CARIBBEAN: OUR EXPERIENCE BUILDING A PARTICIPATORY HEALTH INFORMATICS PROJECT
- DOI:
10.18865/ed.30.s1.193 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:3.2
- 作者:
Wang, Karen;Hambleton, Ian;Nunez-Smith, Marcella - 通讯作者:
Nunez-Smith, Marcella
Dietary Patterns, Food Insecurity, and Their Relationships with Food Sources and Social Determinants in Two Small Island Developing States.
- DOI:
10.3390/nu14142891 - 发表时间:
2022-07-14 - 期刊:
- 影响因子:5.9
- 作者:
Bhagtani, Divya;Augustus, Eden;Haynes, Emily;Iese, Viliamu;Brown, Catherine R.;Fesaitu, Jioje;Hambleton, Ian;Badrie, Neela;Kroll, Florian;Saint-Ville, Arlette;Samuels, Thelma Alafia;Forouhi, Nita G.;Benjamin-Neelon, Sara E.;Unwin, Nigel - 通讯作者:
Unwin, Nigel
Children and the coronavirus disease 2019 pandemic: a Caribbean perspective.
- DOI:
10.26633/rpsp.2022.135 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Evans-Gilbert, Tracy;Lashley, Paula Michele;Lerebours, Emmeline;Quee, Corrine Sin;Singh-Minott, Indira;Fernandes, Maritza;Thomas, Joycelyn Walter;Nelson, Beverly;Braithwaite, Jozan;Hambleton, Ian - 通讯作者:
Hambleton, Ian
Experiences with SARS-CoV-2 (Covid-19) in Trinidad and Tobago, a small island developing state: realities and opportunities.
- DOI:
10.1016/j.lana.2023.100589 - 发表时间:
2023-10 - 期刊:
- 影响因子:0
- 作者:
Dookeeram, Darren;Hariharan, Seetharaman;Hambleton, Ian;Ali, Kareema;Teelucksingh, Surujpaul;Ramsewak, Samuel;Dookeeram, Dave;Maharaj, Sandeep Bhupendra - 通讯作者:
Maharaj, Sandeep Bhupendra
The Burden of Pediatric Visual Impairment and Ocular Diagnoses in Barbados.
- DOI:
10.3390/ijerph20166554 - 发表时间:
2023-08-10 - 期刊:
- 影响因子:0
- 作者:
Da Silva, Kirsten;Dowell, Michelle;Savatovsky, Eleonore J;Grosvenor, Dawn;Callender, David;Campbell, Michael H;Hambleton, Ian;Vanner, Elizabeth A;Grajewski, Alana L;Chang, Ta Chen - 通讯作者:
Chang, Ta Chen
Hambleton, Ian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hambleton, Ian', 18)}}的其他基金
Geometry and Topology of Manifolds
流形的几何和拓扑
- 批准号:
RGPIN-2022-04539 - 财政年份:2022
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
Blockchain research seminar series
区块链研究研讨会系列
- 批准号:
521070-2017 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Connect Grants Level 2
FIELDS - The Fields Institute for Research in the Mathematical Sciences
FIELDS - 菲尔兹数学科学研究所
- 批准号:
342058-2014 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Thematic Resources Support in Mathematics and Statistics
The Institute Innovation Platform
研究院创新平台
- 批准号:
468798-2014 - 财政年份:2016
- 资助金额:
$ 2.91万 - 项目类别:
Partnerships Innovation Platform
相似国自然基金
骨骼肌中胰高血糖素受体的表达及其调控血糖稳态的作用与机制研究
- 批准号:82370820
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Algebraic, Analytic, and Dynamical Properties of Group Actions on 1-Manifolds and Related Spaces
职业:1-流形和相关空间上群作用的代数、解析和动力学性质
- 批准号:
2240136 - 财政年份:2023
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2021
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group Actions on Manifolds and Related Spaces: Regularity, Structure, and Complexity
流形及相关空间的群作用:规则性、结构和复杂性
- 批准号:
2002596 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Standard Grant
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2020
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
2020013 - 财政年份:2019
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Study of group actions on manifolds by psedo-inverse limit systems of equivariant framed maps
等变框架映射伪逆极限系统研究流形上的群作用
- 批准号:
18K03278 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Rigidity of Group Actions on Manifolds
职业:流形上群体行动的刚性
- 批准号:
1752675 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Continuing Grant
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2018
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual
Group actions on manifolds and complexes
流形和复形上的群作用
- 批准号:
RGPIN-2016-05111 - 财政年份:2017
- 资助金额:
$ 2.91万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




