Logic and combinatorics and topology

逻辑、组合学和拓扑

基本信息

项目摘要

The project will develop new mathematical methods and establish new connections between diverse areas of mathematics. The project will focus on connections between Logic, on the one hand, and Topology and Combinatorics, on the other. It will aim at connecting Fraisse theory, an amalgamation theory from Logic, with deep questions on homogeneity of the generic continuum and with possible development of a homology theory. Further, it will aim at establishing connections between Ramsey theory, a branch of Combinatorics, with Topological Dynamics, Algebraic Topology, and certain orders playing an important role in parts of Set Theory.The project will develop a presentation of Ramsey theory in terms of algebraic topological notions - simplicialcomplexes and simplicial maps. This presentation should incorporate both finite and infinite Ramsey theory, and it should capture Ramsey theoretic statements associated with amenability of subgroups of the permutation group of the set of natural numbers. The project will also uncover implications of the dynamics of monoid actions to Ramsey theory. The project will also explore an approach to certain problems in topological dynamics and topology that uses purely combinatorial/model theoretic methods. Some important compact topological spaces are obtained as canonical quotients of generic inverse limits of families of finite structures - projective Fraisse limits. Topological homogeneity questions will be investigated using such presentations. Another aim will be to develop the right notion of the simplex and the boundary operation for homology theory of projective Fraisse limits. The test case here is the development of universal Menger compacta through projective Fraisse limits. Another goal of the project is to explore connections between a fixed point property of group actions, concentration of measure phenomenon, and geometry of submeasures.
该项目将开发新的数学方法并在不同的数学领域之间建立新的联系。该项目将一方面关注逻辑与拓扑和组合学之间的联系。它将旨在将弗赖斯理论(一种来自逻辑学的融合理论)与通用连续体同质性的深刻问题以及同源理论的可能发展联系起来。此外,它将旨在建立拉姆齐理论(组合学的一个分支)与拓扑动力学、代数拓扑以及在集合论的某些部分中发挥重要作用的某些阶之间的联系。该项目将用代数拓扑概念(单纯复形和单纯映射)来表达拉姆齐理论。该演示文稿应包含有限和无限拉姆齐理论,并且应捕获与自然数集的置换群的子群的顺应性相关的拉姆齐理论陈述。该项目还将揭示幺半群行为的动力学对拉姆齐理论的影响。该项目还将探索一种使用纯组合/模型理论方法来解决拓扑动力学和拓扑中某些问题的方法。一些重要的紧拓扑空间是作为有限结构族的一般逆极限(射影弗赖斯极限)的正则商而获得的。将使用此类演示来研究拓扑同质性问题。另一个目标是发展射影弗赖斯极限同调论的单纯形和边界运算的正确概念。这里的测试用例是通过投影 Fraisse 极限开发通用门格尔紧致体。该项目的另一个目标是探索群体行为的定点属性、测量现象的集中度和子测量的几何形状之间的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Slawomir Solecki其他文献

Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups
沃特猜想和波兰变换群的 Glimm-Effros 性质
Decomposing Borel sets and functions and the structure of Baire class 1 functions
分解 Borel 集合和函数以及 Baire 1 类函数的结构
FINITE MODEL THEORY, MEASURE THEORY, AND STRUCTURE OF POLISH GROUPS
波兰群的有限模型理论、测度理论和结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki
Martingale proof of the existence of Lebesgue points
勒贝格点存在的鞅证明
  • DOI:
    10.2307/44152020
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    M. Morayne;Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki
Tukey order among F_sigma ideals
F_sigma 理想中的 Tukey 阶
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Jialiang He;Michael Hrusak;Diego Rojas-Rebolledo;Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki

Slawomir Solecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Slawomir Solecki', 18)}}的其他基金

Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
  • 批准号:
    1954069
  • 财政年份:
    2020
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
Logic and combinatorics and topology
逻辑、组合学和拓扑
  • 批准号:
    1800680
  • 财政年份:
    2017
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
Measurable dynamics of Polish groups and Ramsey theory
波兰群体的可测量动态和拉姆齐理论
  • 批准号:
    1266189
  • 财政年份:
    2013
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
Ramsey theory, dynamics of Polish groups, and Tukey functions
拉姆齐理论、波兰群动力学和图基函数
  • 批准号:
    1001623
  • 财政年份:
    2010
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Logic and Mathematics Conference
逻辑与数学会议
  • 批准号:
    1001663
  • 财政年份:
    2010
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Dynamics, descriptive set theory, and Ramsey theory
动力学、描述性集合论和拉姆齐理论
  • 批准号:
    0700841
  • 财政年份:
    2007
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Logic and Mathematics Conference
逻辑与数学会议
  • 批准号:
    0600316
  • 财政年份:
    2006
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Topics in Applications of Set Theory
集合论应用专题
  • 批准号:
    0400931
  • 财政年份:
    2004
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
  • 批准号:
    0342318
  • 财政年份:
    2003
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advances on Combinatorics of the Real Line and Topology
实线与拓扑组合学研究进展
  • 批准号:
    23K03198
  • 财政年份:
    2023
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Triangulations: linking geometry and topology with combinatorics
三角测量:用组合学将几何和拓扑联系起来
  • 批准号:
    DP220102588
  • 财政年份:
    2023
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Discovery Projects
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
  • 批准号:
    2237324
  • 财政年份:
    2023
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
  • 批准号:
    2231565
  • 财政年份:
    2023
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Continuing Grant
Study of the topology and the combinatorics of polyhedral products
多面体积的拓扑和组合学研究
  • 批准号:
    22K03284
  • 财政年份:
    2022
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology and Combinatorics for Dynamical Systems and Data
动力系统和数据的拓扑和组合学
  • 批准号:
    RGPIN-2022-04301
  • 财政年份:
    2022
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Discovery Grants Program - Individual
Topology and combinatorics of arrangements
排列的拓扑和组合
  • 批准号:
    2204299
  • 财政年份:
    2022
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Topology and geometry of torus actions and combinatorics
环面作用和组合的拓扑和几何
  • 批准号:
    22K03292
  • 财政年份:
    2022
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interactions between dynamics, topology and combinatorics in low dimensions
低维动力学、拓扑学和组合学之间的相互作用
  • 批准号:
    2749484
  • 财政年份:
    2022
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了