Measurable dynamics of Polish groups and Ramsey theory

波兰群体的可测量动态和拉姆齐理论

基本信息

项目摘要

Solecki will study measure preserving actions of certain large Polish groups. It is hoped that this study will uncover analogies between measurable dynamics of such groups and that of a single measure preserving transformation. This study is also expected to shed light on the structure of generic measure preserving transformations. In the second part of the project, Solecki will investigate certain combinatorial phenomena (Ramsey phenomena) that come up in connection with topological dynamics. Building on his abstract approach to Ramsey theory, he will attempt proving certain concrete Ramsey statements that have been proposed in the past. He will also attempt classification of concrete Ramsey theorems in certain limited contexts. Finally, in the third part of the project, he will work on very general, set theoretic methods (Tukey reductions) that are used to compare partial orders coming up in various areas of mathematics. Solecki will investigate problems that involve interactions of various areas of mathematics: logic, ergodic theory, topological dynamics, and combinatorics. Three connected themes serve as both motivation for and areas of applications of the research funded by the project: study of groups of broadly understood symmetries of mathematical objects; study of generic, that is, exhibiting all possible random behavior, symmetries; and study of spaces of objects exhibiting strong forms of homogeneity.
Solecki将研究某些大型波兰团体的措施保持行动。希望这项研究将揭示可测量的动态,这样的群体和一个单一的措施保持变换之间的类比。这项研究也有望揭示一般的测度保持变换的结构。在该项目的第二部分,Solecki将研究与拓扑动力学有关的某些组合现象(拉姆齐现象)。基于他对拉姆齐理论的抽象方法,他将尝试证明过去提出的某些具体的拉姆齐陈述。他还将尝试分类的具体拉姆齐定理在某些有限的情况下。最后,在项目的第三部分,他将研究非常一般的集合论方法(Tukey约简),用于比较数学各个领域中出现的偏序。Solecki将研究涉及数学各个领域的相互作用的问题:逻辑,遍历理论,拓扑动力学和组合学。三个相关的主题作为该项目资助的研究的动机和应用领域:研究广泛理解的数学对象对称性的群体;研究通用,即表现出所有可能的随机行为,对称性;以及研究表现出强烈形式的同质性的对象空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Slawomir Solecki其他文献

Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups
沃特猜想和波兰变换群的 Glimm-Effros 性质
Decomposing Borel sets and functions and the structure of Baire class 1 functions
分解 Borel 集合和函数以及 Baire 1 类函数的结构
FINITE MODEL THEORY, MEASURE THEORY, AND STRUCTURE OF POLISH GROUPS
波兰群的有限模型理论、测度理论和结构
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki
Martingale proof of the existence of Lebesgue points
勒贝格点存在的鞅证明
  • DOI:
    10.2307/44152020
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    0.2
  • 作者:
    M. Morayne;Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki
Tukey order among F_sigma ideals
F_sigma 理想中的 Tukey 阶
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Jialiang He;Michael Hrusak;Diego Rojas-Rebolledo;Slawomir Solecki
  • 通讯作者:
    Slawomir Solecki

Slawomir Solecki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Slawomir Solecki', 18)}}的其他基金

Aspects of Polish group dynamics
波兰团体动态的各个方面
  • 批准号:
    2246873
  • 财政年份:
    2023
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Continuing Grant
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
  • 批准号:
    1954069
  • 财政年份:
    2020
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Continuing Grant
Logic and combinatorics and topology
逻辑、组合学和拓扑
  • 批准号:
    1800680
  • 财政年份:
    2017
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Continuing Grant
Logic and combinatorics and topology
逻辑、组合学和拓扑
  • 批准号:
    1700426
  • 财政年份:
    2017
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Continuing Grant
Ramsey theory, dynamics of Polish groups, and Tukey functions
拉姆齐理论、波兰群动力学和图基函数
  • 批准号:
    1001623
  • 财政年份:
    2010
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Logic and Mathematics Conference
逻辑与数学会议
  • 批准号:
    1001663
  • 财政年份:
    2010
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Dynamics, descriptive set theory, and Ramsey theory
动力学、描述性集合论和拉姆齐理论
  • 批准号:
    0700841
  • 财政年份:
    2007
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Logic and Mathematics Conference
逻辑与数学会议
  • 批准号:
    0600316
  • 财政年份:
    2006
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Topics in Applications of Set Theory
集合论应用专题
  • 批准号:
    0400931
  • 财政年份:
    2004
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
  • 批准号:
    0342318
  • 财政年份:
    2003
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Standard Grant

相似国自然基金

发展基因编码的荧光探针揭示趋化因子CXCL10的时空动态及其调控机制
  • 批准号:
    32371150
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
  • 批准号:
    LY21E080004
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
  • 批准号:
    11174131
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
星系结构基本单元星团的研究
  • 批准号:
    11043006
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
星系恒星与气体的动力学演化
  • 批准号:
    11073025
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目
在我们的门前发掘化石——利用中国即将开展的巡天来研究银河系的演化
  • 批准号:
    11043005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
弦场论及Tachyon动力学
  • 批准号:
    10705008
  • 批准年份:
    2007
  • 资助金额:
    15.0 万元
  • 项目类别:
    青年科学基金项目
微分遍历理论和廖山涛的一些方法的应用
  • 批准号:
    10671006
  • 批准年份:
    2006
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政​​策的情绪动态
  • 批准号:
    10108433
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    EU-Funded
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Collaborative R&D
Braiding Dynamics of Majorana Modes
马约拉纳模式的编织动力学
  • 批准号:
    DP240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Projects
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
  • 批准号:
    DP240100465
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Projects
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Discovery Early Career Researcher Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
  • 批准号:
    EP/Y03614X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Research Grant
Human enteric nervous system progenitor dynamics during development and disease
人类肠神经系统祖细胞在发育和疾病过程中的动态
  • 批准号:
    MR/Y013476/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Research Grant
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
  • 批准号:
    BB/Y004531/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Research Grant
New Ways Forward for Nonlinear Structural Dynamics
非线性结构动力学的新方法
  • 批准号:
    EP/X040852/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.37万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了