Topics in Applications of Set Theory
集合论应用专题
基本信息
- 批准号:0400931
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-06-15 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solecki's research interests lie in applications ofmathematical logic (model theory, set theory and, primarily,descriptive set theory) to analysis and topology. The projectconsists of several parts. For example, Solecki proposes toinvestigate a problem of automatic continuity of universallymeasurable homomorphisms on Polish groups. A possible solution tothis problem will certainly involve descriptive set theory ofPolish groups. However, it is also likely to rely heavily, on theone hand, on set theoretic assumptions (like the ContinuumHypothesis) and, on the other hand, on algebraic properties of theunderlying group (amenability, freeness). Indications of theconnections between this problem and set theory and algebra can befound in earlier work of Christensen, Mokobodzki and Solecki. Inanother part of the project, Solecki will apply methods developedfirst in set theory (in the study of Borel equivalence relations)to problems in topology and model theory. First, he will usedescriptive set theoretic techniques augmented by tools comingfrom model theory to investigate the structure of an importanttopological space---the pseudo-arc. Second, he will apply methodsfrom descriptive set theory to study groups associated canonicallywith countable complete theories---Lascar's Galois groups.In the project, Solecki will apply techniques and notionsdeveloped in mathematical logic to problems in other areas ofmathematics. For example, he will investigate a certaintopological space---a hereditarily indecomposable continuum calledthe pseudo-arc. These types of topological spaces were firstintroduced in mathematics in the first quarter of the twentiethcentury as curious examples of extremely complicated curves.Today, we know that they appear naturally in many mathematicalcontexts, e.g., in fluid dynamics, in smooth dynamical systemsliving in Euclidean spaces, among topological groups, in the studyof continuous functions, etc. Solecki intends to gain a betterunderstanding of the pseudo-arc by using methods from descriptiveset theory, a branch of mathematical logic, which were originallydeveloped to study in an effective way the size of abstract sets.It is hoped that crossing boundaries of subfields of mathematicsby applying set theoretic methods in analysis and topology shouldlead to new and substantial insights.
索莱茨基的研究兴趣在于应用数学逻辑(模型论,集合论,主要是描述性集合论)的分析和拓扑。该项目由几个部分组成。例如,Solecki提出研究波兰群上普遍可测同态的自动连续性问题。一个可能的解决这个问题肯定会涉及描述波兰组的集合论。然而,它也很可能严重依赖,一方面,在集理论假设(如连续统假设),另一方面,在代数性质的基础组(顺从性,自由度)。这个问题之间的联系和集合论和代数的迹象可以发现在早期的工作克里斯滕森,Mokobodzki和Solecki。在该项目的另一部分,Solecki将应用方法开发首先在集合论(在博雷尔等价关系的研究)的问题,拓扑和模型理论。首先,他将使用描述集理论的技术,通过来自模型论的工具来研究一个重要的拓扑空间--伪弧的结构。第二,他将应用描述集合论的方法来研究与可数完备理论相关的典型群-例如,他将研究一个特定的拓扑空间-一个遗传上不可分解的连续体,称为伪弧。这些类型的拓扑空间最早是在20世纪25年代作为极其复杂的曲线的奇怪例子引入数学的。今天,我们知道它们在许多数学背景下自然出现,例如,在流体动力学中,在欧氏空间中的光滑动力系统中,在拓扑群中,在连续函数的研究中,等等。Solecki打算通过使用数理逻辑的分支-它最初是为了有效地研究抽象集合的大小而发展起来的,人们希望通过集合论的应用,跨越抽象学各个子领域的界限,在分析和拓扑学的方法应该导致新的和实质性的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slawomir Solecki其他文献
Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups
沃特猜想和波兰变换群的 Glimm-Effros 性质
- DOI:
10.1090/s0002-9947-99-02141-8 - 发表时间:
1999 - 期刊:
- 影响因子:1.3
- 作者:
G. Hjorth;Slawomir Solecki - 通讯作者:
Slawomir Solecki
Decomposing Borel sets and functions and the structure of Baire class 1 functions
分解 Borel 集合和函数以及 Baire 1 类函数的结构
- DOI:
10.1090/s0894-0347-98-00269-0 - 发表时间:
1998 - 期刊:
- 影响因子:3.9
- 作者:
Slawomir Solecki - 通讯作者:
Slawomir Solecki
Martingale proof of the existence of Lebesgue points
勒贝格点存在的鞅证明
- DOI:
10.2307/44152020 - 发表时间:
1989 - 期刊:
- 影响因子:0.2
- 作者:
M. Morayne;Slawomir Solecki - 通讯作者:
Slawomir Solecki
FINITE MODEL THEORY, MEASURE THEORY, AND STRUCTURE OF POLISH GROUPS
波兰群的有限模型理论、测度理论和结构
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Slawomir Solecki - 通讯作者:
Slawomir Solecki
Tukey order among F_sigma ideals
F_sigma 理想中的 Tukey 阶
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.6
- 作者:
Jialiang He;Michael Hrusak;Diego Rojas-Rebolledo;Slawomir Solecki - 通讯作者:
Slawomir Solecki
Slawomir Solecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slawomir Solecki', 18)}}的其他基金
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
- 批准号:
1954069 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Measurable dynamics of Polish groups and Ramsey theory
波兰群体的可测量动态和拉姆齐理论
- 批准号:
1266189 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Ramsey theory, dynamics of Polish groups, and Tukey functions
拉姆齐理论、波兰群动力学和图基函数
- 批准号:
1001623 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamics, descriptive set theory, and Ramsey theory
动力学、描述性集合论和拉姆齐理论
- 批准号:
0700841 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
- 批准号:
0342318 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Applications of AI in Market Design
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
- 批准号:
RGPIN-2017-05712 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Some applications of set theory to analysis
集合论在分析中的一些应用
- 批准号:
RGPIN-2018-05498 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
LEAPS-MPS: Advancing Approximation of Heterogeneous Multi-Objective Set Covering Problems with Modeling and Applications
LEAPS-MPS:通过建模和应用推进异构多目标集覆盖问题的逼近
- 批准号:
2137622 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Applications of set theory to abstract harmonic analysis
集合论在抽象调和分析中的应用
- 批准号:
RGPIN-2017-05712 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Set Optimization for sets with inferior-to-superior relationship and its applications to numerical analysis
具有劣优关系的集合优化及其在数值分析中的应用
- 批准号:
21K03367 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of Set Theory to Topology and Topology to Model Theory
集合论在拓扑中的应用以及拓扑在模型论中的应用
- 批准号:
RGPIN-2016-06319 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Applications of probabilistic combinatorics and extremal set theory to deriving bounds in classical and quantum coding theory
概率组合学和极值集合论在经典和量子编码理论中推导界限的应用
- 批准号:
20K11668 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)