Dynamics, descriptive set theory, and Ramsey theory
动力学、描述性集合论和拉姆齐理论
基本信息
- 批准号:0700841
- 负责人:
- 金额:$ 23.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the project, Solecki will explore several problems whosesolutions will involve interactions of a number of areas ofmathematics: logic (descriptive set theory and elements of modeltheory), topological dynamics, and combinatorics. For example,Solecki intends to study questions concerning dynamical propertiesof the homeomorphism group of the pseudo-arc. By a recent work of Irwin andSolecki, these dynamical questions can be approached usingprojective Fra\"iss\'e limits, which are dual versions of theclassical construction of Fra\"iss\'e limits from model theory.Now, the corresponding questions about projective Fra\"iss\'elimits can be translated to purely combinatorial problems concerningfinite objects. To solve these problems Solecki will attempt todevelop new combinatorial techniques with the guidance of analogieswith the Ramsey theory for finite structures, a classical branch ofcombinatorics. This research will not only involve applying resultsfrom one part of mathematics to another. The expectation is that theinteractions will be mutually beneficial: the topological dynamicsquestion suggests a new model theoretic construction, which in turnleads to an interesting combinatorial problem, whose solutionyields, on the one hand, a new combinatorial theorem and, on theother hand, an answer to the original dynamical question. In asimilar manner, other parts of the project feature interactions ofdescriptive set theory, model theory, topological dynamics, andcombinatorics in the study of extreme amenability, Borel equivalencerelations, and algebraic properties of isometry groups. It may be hoped that crossing boundaries of subfields of mathematics will lead to new and substantial insights.
在该项目中,Solecki将探讨几个问题,其解决方案将涉及一些数学领域的相互作用:逻辑(描述性集合论和模型论元素),拓扑动力学和组合学。例如,Solecki打算研究有关伪弧的同胚群的动力学性质的问题。欧文和索莱茨基最近的工作表明,这些动力学问题可以用投影Fra“iss”e极限来处理,这是经典的Fra“iss”e极限的对偶形式.现在,投影Fra“iss”e极限的相应问题可以转化为有关有限对象的纯组合问题.为了解决这些问题,Solecki将尝试开发新的组合技术的指导下analogies与拉姆齐理论的有限结构,一个经典的分支组合。这项研究将不仅涉及应用结果从一个部分的数学到另一个。期望的是,相互作用将是互利的:拓扑动力学问题提出了一个新的模型理论建设,这反过来又导致一个有趣的组合问题,其解决方案产量,一方面,一个新的组合定理,另一方面,一个答案,原来的动力学问题。以类似的方式,该项目的其他部分功能的相互作用的描述集理论,模型理论,拓扑动力学,和组合学的研究极端的顺从性,Borel equivalencerrelations,代数性质的等距群。人们希望,跨越数学子领域的界限将导致新的和实质性的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Slawomir Solecki其他文献
Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups
沃特猜想和波兰变换群的 Glimm-Effros 性质
- DOI:
10.1090/s0002-9947-99-02141-8 - 发表时间:
1999 - 期刊:
- 影响因子:1.3
- 作者:
G. Hjorth;Slawomir Solecki - 通讯作者:
Slawomir Solecki
Decomposing Borel sets and functions and the structure of Baire class 1 functions
分解 Borel 集合和函数以及 Baire 1 类函数的结构
- DOI:
10.1090/s0894-0347-98-00269-0 - 发表时间:
1998 - 期刊:
- 影响因子:3.9
- 作者:
Slawomir Solecki - 通讯作者:
Slawomir Solecki
FINITE MODEL THEORY, MEASURE THEORY, AND STRUCTURE OF POLISH GROUPS
波兰群的有限模型理论、测度理论和结构
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Slawomir Solecki - 通讯作者:
Slawomir Solecki
Martingale proof of the existence of Lebesgue points
勒贝格点存在的鞅证明
- DOI:
10.2307/44152020 - 发表时间:
1989 - 期刊:
- 影响因子:0.2
- 作者:
M. Morayne;Slawomir Solecki - 通讯作者:
Slawomir Solecki
Tukey order among F_sigma ideals
F_sigma 理想中的 Tukey 阶
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0.6
- 作者:
Jialiang He;Michael Hrusak;Diego Rojas-Rebolledo;Slawomir Solecki - 通讯作者:
Slawomir Solecki
Slawomir Solecki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Slawomir Solecki', 18)}}的其他基金
Definable Equivalence Relations and Dynamics, Topological and Measurable, of Polish Groups
波兰群的可定义等价关系和动力学、拓扑和可测
- 批准号:
1954069 - 财政年份:2020
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Logic and combinatorics and topology
逻辑、组合学和拓扑
- 批准号:
1800680 - 财政年份:2017
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Logic and combinatorics and topology
逻辑、组合学和拓扑
- 批准号:
1700426 - 财政年份:2017
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Measurable dynamics of Polish groups and Ramsey theory
波兰群体的可测量动态和拉姆齐理论
- 批准号:
1266189 - 财政年份:2013
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Ramsey theory, dynamics of Polish groups, and Tukey functions
拉姆齐理论、波兰群动力学和图基函数
- 批准号:
1001623 - 财政年份:2010
- 资助金额:
$ 23.74万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory to Ideals of Closed Sets and Indecomposable Continua
描述集合论在闭集理想和不可分解连续体中的应用
- 批准号:
0342318 - 财政年份:2003
- 资助金额:
$ 23.74万 - 项目类别:
Standard Grant
相似海外基金
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2348208 - 财政年份:2024
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPAS-2020-00097 - 财政年份:2022
- 资助金额:
$ 23.74万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPIN-2020-05445 - 财政年份:2022
- 资助金额:
$ 23.74万 - 项目类别:
Discovery Grants Program - Individual
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2224709 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Standard Grant
Descriptive Set Theory and Categorical Logic
描述集合论和分类逻辑
- 批准号:
2054508 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Standard Grant
Applications of Descriptive Set Theory in Ergodic Theory and Smooth Dynamical Systems
描述集合论在遍历理论和光滑动力系统中的应用
- 批准号:
2100367 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPIN-2020-05445 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Discovery Grants Program - Individual
Descriptive Set Theory and Computability
描述性集合论和可计算性
- 批准号:
2054182 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant
Measurable group theory, descriptive set theory and model theory of homogeneous structures
可测群论、描述集合论和齐次结构模型论
- 批准号:
RGPAS-2020-00097 - 财政年份:2021
- 资助金额:
$ 23.74万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Descriptive Set Theory and Its Applications
描述集合论及其应用
- 批准号:
1950475 - 财政年份:2020
- 资助金额:
$ 23.74万 - 项目类别:
Continuing Grant