Molecular Rotors and Materials Properties of Rotary Dipolar Arrays

旋转偶极阵列的分子转子和材料特性

基本信息

  • 批准号:
    1700471
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:Based on the use of advanced molecular design, synthetic chemistry, and molecular self-assembly, researchers at UCLA are pursuing the control of molecular motion in the solid state to control the physical properties of a new class of materials known as amphidynamic crystals. Equipped with rotary components bearing positive and negative groups in structures that resemble macroscopic compasses, these materials are capable of responding to the presence external electric and magnetic fields to change their physical properties. While some specific molecular compass arrangements are expected to cause all the dipoles to point in the same direction, others are expected cause adjacent dipoles to point in opposite ways (these arrangements are known, respectively, as ferroelectric and antiferroelectric). While these new materials have the potential of displaying interesting electric, magnetic, and elastic capabilities, the so-called multiferroic properties that can be controlled with external fields, this work includes experiments that measure their interaction with light as a result of changes in the orientation of the constituent dipoles. These materials are expected to be among the fastest, most efficient optical switches. With molecules designed to switch between states rotation in the solid state, the UCLA group intends to control the speed of sound and create devices that will help control the rate of signal transmission. Research on amphidynamic crystals based on inertial dipolar arrays provides a unique opportunity to educate and train talented materials chemists from a wide range of backgrounds. The PI has been successful attracting women and students for underprivileged backgrounds to his research group by maintaining a supportive and creative environment that fosters careers in materials science and in science education. Technical Abstract:The realization of freely reorienting dipolar molecular rotors pursued in this project is a new frontier in materials chemistry design. Engineered rotation in these "amphidynamic crystals," relies on structural elements that combine a set of relatively static, lattice-forming units, and dipolar components that possess the ability to reorient about established lattice directions in response of internal dipolar interactions and external fields. To determine internal rotational dynamics in the solid state this project takes advantage of multinuclear (1H, 19F, 15N, 13C) Nuclear Magnetic Resonance (NMR) techniques. These include spin-lattice (T1) relaxation and quadrupolar echo 2H NMR line shape analysis as a function of temperature. Variations in temperature between ca. 4K and 500K make it possible to determine rotational motion over a range that covers from a few kilohertz to the terahertz regime and determine activation energies from close to zero up to ca. 15-20 kcal/mol. Inertial polar rotators with barriers that are lower than thermal energies are expected to reorient very rapidly, such that their emergent polarization below their corresponding Curie-Weiss temperatures will make it possible to study dipolar self-organization that will lead to the emergence of a new class of designer ferroic materials with electric, magnetic, and elastic switching capabilities. To test their properties, an emphasis is placed on measurements that help disclose inner dipolar order in the form of temperature-dependent transitions between paraelectric and ferroelectric or antiferroelectric states. It is predicted that dynamic correlations resulting from rotational motion and dipole-dipole interactions follow either conrotatory (ferroelectric) or disrotatory (antiferroelectric) trajectories and studies are in progress to analyze rotational correlations (gearing) based on mechanical (steric) forces.
非技术摘要:基于先进的分子设计,合成化学和分子自组装的使用,加州大学洛杉矶分校的研究人员正在追求在固态分子运动的控制,以控制一类新的材料的物理性质称为两性晶体。 这些材料配备了类似于宏观罗盘的结构中带有正负基团的旋转组件,能够响应外部电场和磁场的存在来改变其物理特性。 虽然一些特定的分子罗盘排列预计会导致所有的偶极子指向同一个方向,但其他人预计会导致相邻的偶极子指向相反的方向(这些排列分别被称为铁电和反铁电)。 虽然这些新材料有可能显示出有趣的电,磁和弹性能力,即所谓的多铁性,可以用外部场控制,但这项工作包括测量它们与光的相互作用的实验,作为组成偶极子方向变化的结果。这些材料有望成为最快、最高效的光开关之一。 随着分子设计成在固态旋转状态之间切换,加州大学洛杉矶分校的研究小组打算控制声速,并创造有助于控制信号传输速率的设备。 基于惯性偶极阵列的双动力晶体的研究为教育和培训来自广泛背景的有才华的材料化学家提供了一个独特的机会。 PI通过保持一个支持性和创造性的环境,促进材料科学和科学教育的职业生涯,成功地吸引了贫困背景的妇女和学生加入他的研究小组。 技术摘要:本项目所追求的自由取向偶极分子转子的实现是材料化学设计的新前沿。在这些“双动晶体”中的工程旋转依赖于联合收割机一组相对静态的晶格形成单元和偶极组分的结构元素,所述偶极组分具有响应于内部偶极相互作用和外部场而围绕所建立的晶格方向重新定向的能力。 为了确定固态的内部旋转动力学,该项目利用多核(1H,19 F,15 N,13 C)核磁共振(NMR)技术。这些包括自旋-晶格(T1)弛豫和四极回波2 H NMR线形分析作为温度的函数。 温度变化之间的CA。4K和500 K使得有可能确定从几千赫兹到太赫兹范围内的旋转运动,并确定从接近零到大约1000赫兹的活化能。15-20千卡/摩尔。 具有低于热能的势垒的惯性极性旋转器预计将非常迅速地重新取向,使得它们在相应的居里-外斯温度以下的出现极化将使研究偶极自组织成为可能,这将导致一类新的设计师铁电材料的出现,具有电,磁和弹性开关能力。为了测试它们的性能,重点放在测量,帮助披露内部偶极秩序的形式,顺电和铁电或反铁电状态之间的温度依赖性的转变。据预测,从旋转运动和偶极-偶极相互作用产生的动态相关性遵循顺旋(铁电)或反旋(反铁电)轨迹,并且正在进行研究以分析基于机械(空间)力的旋转相关性(齿轮)。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dipolar order in an amphidynamic crystalline metal–organic framework through reorienting linkers
  • DOI:
    10.1038/s41557-020-00618-6
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Y.-S. Su;E. Lamb;I. Liepuoniute;A. Chronister;A. L. Stanton;P. Guzman;S. Pérez-Estrada;T. Chang;K. Houk;M. Garcia‐Garibay;S. Brown
  • 通讯作者:
    Y.-S. Su;E. Lamb;I. Liepuoniute;A. Chronister;A. L. Stanton;P. Guzman;S. Pérez-Estrada;T. Chang;K. Houk;M. Garcia‐Garibay;S. Brown
Static Modulation Wave of Arrays of Halogen Interactions Transduced to a Hierarchy of Nanoscale Change Stimuli of Crystalline Rotors Dynamics
卤素相互作用阵列的静态调制波转换为晶体转子动力学纳米级变化刺激的层次结构
  • DOI:
    10.1021/acs.nanolett.8b00956
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Simonov, Sergey;Zorina, Leokadiya;Wzietek, Pawel;Rodríguez-Fortea, Antonio;Canadell, Enric;Mézière, Cécile;Bastien, Guillaume;Lemouchi, Cyprien;Garcia-Garibay, Miguel A.;Batail, Patrick
  • 通讯作者:
    Batail, Patrick
Thermosalient Amphidynamic Molecular Machines: Motion at the Molecular and Macroscopic Scales
  • DOI:
    10.1016/j.matt.2019.06.018
  • 发表时间:
    2019-10-02
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Colin-Molina, Abraham;Karothu, Durga Prasad;Rodriguez-Molina, Braulio
  • 通讯作者:
    Rodriguez-Molina, Braulio
Ultrafast rotation in an amphidynamic crystalline metal organic framework
The Roles of Intrinsic Barriers and Crystal Fluidity in Determining the Dynamics of Crystalline Molecular Rotors and Molecular Machines
  • DOI:
    10.1021/acs.joc.9b00993
  • 发表时间:
    2019-08-16
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Howe, Morgan E.;Garcia-Garibay, Miguel A.
  • 通讯作者:
    Garcia-Garibay, Miguel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miguel Garcia-Garibay其他文献

Miguel Garcia-Garibay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miguel Garcia-Garibay', 18)}}的其他基金

Dipolar Correlations in Amphidynamic Crystalline Rotor Arrays
两栖晶体转子阵列中的偶极相关性
  • 批准号:
    2203519
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Spin, Exciton and Chemical Dynamics in Crystalline Solids
晶体固体中的自旋、激子和化学动力学
  • 批准号:
    2154210
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
FDSS: University of California-Los Angeles (UCLA) Faculty Recruitment in the Space Sciences
FDSS:加州大学洛杉矶分校 (UCLA) 空间科学系教师招聘
  • 批准号:
    1936186
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Molecular Information and Crystal Control in Solid State Photochemistry. Radical Pair Dynamics, Synthetic Applications and Triplet Quantum Chains
固态光化学中的分子信息和晶体控制。
  • 批准号:
    1855342
  • 财政年份:
    2019
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
SusChEM: Molecular Information and Crystal Control in Solid State Photochemical Reactivity
SusChEM:固态光化学反应中的分子信息和晶体控制
  • 批准号:
    1566041
  • 财政年份:
    2016
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Solid-State NMR Spectrometer for Chemistry Research Education and Training
MRI:购买用于化学研究教育和培训的固态核磁共振波谱仪
  • 批准号:
    1532232
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Design, Synthesis, Crystallization and Materials Properties of Rotary Dipolar Arrays
旋转偶极阵列的设计、合成、结晶和材料性能
  • 批准号:
    1402682
  • 财政年份:
    2014
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Green Chemistry, Absolute Kinetics, and Signal Amplification with Molecular Nanocrystals
绿色化学、绝对动力学和分子纳米晶体信号放大
  • 批准号:
    1266405
  • 财政年份:
    2013
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Amphidynamic Crystalline Materials Based on Inertial Rotors and Dipolar Arrays
基于惯性转子和偶极阵列的两栖晶体材料
  • 批准号:
    1101934
  • 财政年份:
    2011
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Chemical Dynamics and Green Chemistry Strategies with Organic Nanocrystals
有机纳米晶体的化学动力学和绿色化学策略
  • 批准号:
    0844455
  • 财政年份:
    2009
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
  • 批准号:
    10098069
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Collaborative R&D
Coated Disc - Manufacture and coating of high-performance rotors using EHLA technology
涂层盘 - 使用 EHLA 技术制造和涂层高性能转子
  • 批准号:
    10019441
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Collaborative R&D
Experimental optimization of rotors in unsteady environments
非稳态环境下转子的实验优化
  • 批准号:
    574106-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Réduction de l'empreinte acoustique des rotors carénés
转子声学研究的简化
  • 批准号:
    570900-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Alliance Grants
Aerodynamics and aeroacoustics of closely coupled rotors
紧耦合转子的空气动力学和气动声学
  • 批准号:
    EP/V05614X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
Simultaneous imaging of protein-protein and protein-membrane interactions using molecular rotors
使用分子转子同时成像蛋白质-蛋白质和蛋白质-膜相互作用
  • 批准号:
    2741582
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Studentship
Preparative Ultracentrifuge and Rotors for Western BioCORE Facility
用于 Western BioCORE 设施的制备型超速离心机和转头
  • 批准号:
    RTI-2023-00211
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Tools and Instruments
Reducing emissions, increasing comfort: Optimizing alumina coatings on electric vehicle brake rotors
减少排放,提高舒适度:优化电动汽车制动盘上的氧化铝涂层
  • 批准号:
    560795-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Alliance Grants
Fluid-Structure Interaction of Wind and Tidal Rotors
风转子和潮汐转子的流固耦合
  • 批准号:
    2769048
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Studentship
Modeling and optimization of the milling process of compressor rotors
压缩机转子铣削工艺的建模与优化
  • 批准号:
    556494-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了