EAGER: Collaborative Research: Integrating microtome sectioning with isotopic tracing to study biotransformation in synthetic Escherichia coli biofilms
EAGER:合作研究:将切片机切片与同位素示踪相结合,研究合成大肠杆菌生物膜的生物转化
基本信息
- 批准号:1700935
- 负责人:
- 金额:$ 3.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-03-01 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1700881/1700935Tang/RenBiofilms are created by colonies of bacteria with polymeric substances produced by the cells. With a high-level of tolerance to a variety of stresses, biofilms cause serious problems in both industrial (biofouling and corrosion) and healthcare (persistent infections) settings. On the other hand, biofilms of environmentally friendly bacteria have promising applications in bioremediation and biofuel production. This project will develop a new method for investigating nutrient transport and enzyme activity of using Escherichia coli as a model organism.The PIs have extensive research experience in E. coli metabolic analysis and biofilm physiology. This team will develop and test a new biofilm study method by integrating several interdisciplinary approaches: 1) culture synthetic biofilms with controlled morphology to reduce spatial variation in gene expression and enzymatic functions; 2) use microtome sectioning to obtain thin slides of biofilm samples with cells in similar metabolic/nutrient transport status; and, 3) apply a stable isotopic labeling method (i.e., 13C-pulse) to trace nutrient mass transfer within biofilm layers as well as intracellular free metabolite conversions along functional pathways. The transient labeling in cascade metabolites can reveal the speed of substrate diffusion through biofilm layers as well as the rate of biotransformation into downstream intracellular metabolites. It can also determine these active biotransformation pathways important for biofilm survival and growth. Ultimately, the outcome of this exploratory project will be a new method for studying biofilm physiology (i.e., intracellular biotransformation) of diverse environmental microbes. This biofilm study technology will reveal regulatory mechanisms of biofilm growth and persistence under environmental stresses (e.g., antibiotic conditions); and it will improve our understandings of diverse biofilm systems from environmental microbes to pathogens. Specifically, Escherichia coli will be used as a model bacterium in this project with complementary studies outlined in the following Tasks: 1. Create synthetic biofilms with rigorously controlled morphology to reduce structural heterogeneity. 2. Optimize microtome technology to quench and sample free metabolites from different layers of biofilm cells, which can be analyzed via liquid chromatography-mass spectrometry. 3. Validate this new method by conducting 13C-pulse experiments with microtome sectioning and liquid chromatography-mass spectrometry analysis of cascade metabolites to determine glucose transfer and biotransformation rates across different layers of E. coli biofilm cells. This project will result in a new approach to section biofilms to detect metabolite biotransformation and probe the pathway function with desired spatial resolutions. The interdisciplinary nature of this work and the development of new tools outlined herein will build the foundation for advanced research and innovation to address many grand challenges associated with microbial biofilms at molecular level. It will provide new insights into nutrient transport and intracellular enzyme conversions within the biofilm matrix; and help reveal regulatory mechanisms and essential pathways for biofilm survival under diverse environmental conditions. Such insights can help researchers design more effective way to control biofilm physiologies.
生物膜是由细菌菌落与细胞产生的聚合物质形成的。由于生物膜对各种压力具有很高的耐受性,因此在工业(生物污染和腐蚀)和医疗保健(持续感染)环境中都会引起严重的问题。另一方面,环境友好菌的生物膜在生物修复和生物燃料生产方面具有广阔的应用前景。本项目将为研究以大肠杆菌为模式生物的营养转运和酶活性提供一种新的方法。pi在大肠杆菌代谢分析和生物膜生理学方面具有丰富的研究经验。该团队将开发和测试一种新的生物膜研究方法,通过整合几个跨学科的方法:1)培养具有控制形态的合成生物膜,以减少基因表达和酶功能的空间差异;2)利用显微切片法获得细胞代谢/营养转运状态相似的生物膜样品的薄片;3)应用稳定同位素标记方法(即13c脉冲)来追踪生物膜层内的营养物质传递以及细胞内自由代谢物沿功能途径的转化。级联代谢物的瞬时标记可以揭示底物通过生物膜层的扩散速度以及生物转化为下游细胞内代谢物的速度。它还可以确定这些对生物膜生存和生长重要的活性生物转化途径。最终,该探索性项目的成果将成为研究多种环境微生物生物膜生理学(即细胞内生物转化)的新方法。这种生物膜研究技术将揭示生物膜在环境胁迫(如抗生素条件)下生长和持续的调节机制;它将提高我们对从环境微生物到病原体的各种生物膜系统的理解。具体而言,大肠杆菌将作为本项目的模型细菌,并在以下任务中概述补充研究:1。创造具有严格控制形态的合成生物膜,以减少结构异质性。2. 优化微生物组技术,从不同层的生物膜细胞中淬灭和取样游离代谢物,可通过液相色谱-质谱分析。3. 通过进行13c脉冲实验,用显微切片和级联代谢物的液相色谱-质谱分析来验证这种新方法,以确定葡萄糖在不同层的大肠杆菌生物膜细胞中的转移和生物转化率。该项目将产生一种新的方法来切片生物膜,以检测代谢物的生物转化,并以所需的空间分辨率探测途径功能。这项工作的跨学科性质以及本文概述的新工具的开发将为在分子水平上解决与微生物生物膜相关的许多重大挑战的高级研究和创新奠定基础。它将为生物膜基质内的营养转运和细胞内酶转化提供新的见解;并有助于揭示生物膜在不同环境条件下生存的调控机制和重要途径。这些见解可以帮助研究人员设计出更有效的控制生物膜生理的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dacheng Ren其他文献
Controlling persister cells of <em>Pseudomonas aeruginosa</em> PDO300 by (<em>Z</em>)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5<em>H</em>)-one
- DOI:
10.1016/j.bmcl.2013.06.011 - 发表时间:
2013-08-15 - 期刊:
- 影响因子:
- 作者:
Jiachuan Pan;Fangchao Song;Dacheng Ren - 通讯作者:
Dacheng Ren
Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances
- DOI:
10.1007/s11705-014-1412-3 - 发表时间:
2014-01-30 - 期刊:
- 影响因子:4.500
- 作者:
Huan Gu;Dacheng Ren - 通讯作者:
Dacheng Ren
The 2023 Orthopedic Research Society's international consensus meeting on musculoskeletal infection: Summary from the in vitro section
2023年骨科研究会肌肉骨骼感染国际共识会议:体外部分总结
- DOI:
10.1002/jor.25774 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Noreen J. Hickok;Bingyun Li;Ebru Oral;S. Zaat;David A. Armbruster;Gerald J. Atkins;Antonia F. Chen;Débora C. Coraça‐Huber;Tianhong Dai;Edward M. Greenfield;Rajendra Kasinath;Matthew Libera;Cláudia N H Marques;T. Fintan Moriarty;K. Scott Phillips;Kapil Raghuraman;Dacheng Ren;Lia Rimondini;K. Saeed;Thomas P. Schaer;Edward M. Schwarz;Christopher Spiegel;P. Stoodley;Vi Khanh Truong;Shao‐Ting Jerry Tsang;B. Wildemann;A. R. Zelmer;A. Zinkernagel - 通讯作者:
A. Zinkernagel
Weak centers and local critical periods for a Z2- equivariant cubic system
Z2-等变立方系统的弱中心和局部临界期
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:5.6
- 作者:
Ting Chen;Wentao Huang;Dacheng Ren - 通讯作者:
Dacheng Ren
Dacheng Ren的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dacheng Ren', 18)}}的其他基金
Developing Rational Design Principles for Textured Medical Device Surfaces
制定纹理医疗器械表面的合理设计原则
- 批准号:
2037856 - 财政年份:2020
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Innovative Materials and Processes for Antimicrobial Control Technologies (IMPACT)
规划资助:抗菌控制技术创新材料与工艺工程研究中心(IMPACT)
- 批准号:
1936926 - 财政年份:2019
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Rational Design of Dynamic Antifouling Material Topographies for Safer Medical Devices
合理设计动态防污材料形貌,提高医疗器械安全性
- 批准号:
1836723 - 财政年份:2018
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Integrating synthetic biology approaches with patterned biofilm formation to investigate bacterial persistence in heterogeneous structures
将合成生物学方法与图案化生物膜形成相结合,研究异质结构中的细菌持久性
- 批准号:
1706061 - 财政年份:2017
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
MRI: Acquisition of a fluorescence activated cell sorter
MRI:获取荧光激活细胞分选仪
- 批准号:
1337787 - 财政年份:2013
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
EFRI-MIKS: Deciphering and Controlling the Signaling Processes in Bacterial Multicellular Systems and Bacteria-Host Interactions
EFRI-MIKS:破译和控制细菌多细胞系统和细菌-宿主相互作用中的信号传导过程
- 批准号:
1137186 - 财政年份:2011
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
CAREER: Patterned Biofilm Formation by Surface Design: Linking Structure to Physiology and Genetics
职业:通过表面设计形成图案化生物膜:将结构与生理学和遗传学联系起来
- 批准号:
1055644 - 财政年份:2011
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Bacteria-Surface Interactions by Surface Engineering and Mathematical Modeling
合作研究:通过表面工程和数学建模研究细菌与表面的相互作用
- 批准号:
0826288 - 财政年份:2008
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 3.25万 - 项目类别:
Standard Grant