New Directions in the Theory of Automorphic Forms
自守形式理论的新方向
基本信息
- 批准号:1701638
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns number theory, the oldest branch of mathematics. More specifically, it focuses on the study of automorphic forms. Automorphic forms are a very special class of functions that form an important bridge connecting the discrete objects of algebraic number theory and the continuous objects of analytic number theory. Automorphic forms are used as tools to study number theoretic functions, e.g. by measuring their rates of growth, discovering formulas for them, or proving relations that they satisfy. Classically, special values of automorphic forms provided the solution to Kronecker's problem for extensions of the rational numbers that do not lie in the real line. More recently, automorphic forms played a pivotal role in the proof of Fermat's Last Theorem. This project aims to further explore the connection of automorphic forms to other mathematical structures.The main object of the proposed research is to further understand and exploit the relationship between automorphic forms and quadratic number fields. This relationship is exceedingly rich and unites the study of diverse objects such as Heegner points, closed geodesics, the hyperbolic Laplacian, Kloosterman sums, L-functions and class fields. The theory for imaginary quadratic fields is in general better developed and simpler, especially in relation to class field theory. The investigators will concentrate mostly on the real quadratic case. In one direction, they will study some new geometric invariants associated to real quadratic fields that were introduced recently. These invariants are certain surfaces that are bounded by modular closed geodesics. The investigators will study the distribution of the areas of the surfaces, especially as this relates to ideal classes and also investigate some new geometric problems about the closed geodesics. They plan to express various invariants for real quadratic fields (such as surface integrals of modular functions) in terms of the Fourier coefficients of automorphic forms. This naturally leads to problems involving sums of Kloosterman sums and to extensions of recent work on uniform estimates for such sums.
这个研究项目涉及数论,这是数学中最古老的分支。更具体地说,它侧重于自同构形式的研究。自同构形式是一类非常特殊的函数,它是连接代数数论的离散对象和解析数论的连续对象的重要桥梁。自同构形式被用作研究数论函数的工具,例如,通过测量它们的增长率,发现它们的公式,或证明它们满足的关系。经典地,自同构形式的特殊值为不在实数线上的有理数的扩展提供了Kronecker问题的解。最近,自同构形式在费马大定理的证明中发挥了关键作用。本项目旨在进一步探索自同构形式与其他数学结构的联系。本研究的主要目的是进一步理解和开发自同构形式与二次元数域之间的关系。这种关系非常丰富,并将各种对象的研究结合起来,如Heegner点、封闭测地线、双曲拉普拉斯、Kloosterman和、l函数和类域。一般来说,虚二次场的理论发展得更好,也更简单,特别是在类场论方面。调查人员将主要集中于真正的二次型情况。一方面,他们将研究最近引入的与实数二次域相关的一些新的几何不变量。这些不变量是由模封闭测地线限定的曲面。研究人员将研究曲面面积的分布,特别是与理想类有关的分布,并研究关于封闭测地线的一些新的几何问题。他们计划用自同构形式的傅里叶系数来表示实二次域的各种不变量(例如模函数的表面积分)。这自然导致了涉及Kloosterman和和的问题,以及最近关于这种和的统一估计的工作的扩展。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Markov spectra for modular billiards
模块化台球的马尔可夫谱
- DOI:10.1007/s00208-018-1781-x
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Andersen, Nickolas;Duke, William
- 通讯作者:Duke, William
Kronecker’s first limit formula, revisited
重新审视克罗内克的第一个极限公式
- DOI:10.1007/s40687-018-0138-0
- 发表时间:2018
- 期刊:
- 影响因子:1.2
- 作者:Duke, W.;Imamoḡlu, Ö.;Tóth, Á.
- 通讯作者:Tóth, Á.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Duke其他文献
Siegel modular forms of small weight
重量轻的西格尔模块化形式
- DOI:
10.1007/s002080050137 - 发表时间:
1998 - 期刊:
- 影响因子:1.4
- 作者:
William Duke;Ö. Imamoḡlu - 通讯作者:
Ö. Imamoḡlu
Longitudinal changes in hand hygiene adherence among healthcare workers during the COVID-19 pandemic, Dominican Republic
多米尼加共和国 COVID-19 大流行期间医护人员手部卫生依从性的纵向变化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. D. Schnorr;Kathryn W. Roberts;E. C. Payano;Paloma Martínez Guzmán;M. De St. Aubin;Matthew Lozier;Salomé Garnier;D. Dumas;Kelsey McDavid;C. T. Then Paulino;R. Skewes;Christina Craig;E. Zielinski Gutiérrez;William Duke;Eric Nilles - 通讯作者:
Eric Nilles
HYDROXYCARBAMIDE EFFECT ON DNA METHYLATION AND GENE EXPRESSION IN MYELOPROLIFERATIVE NEOPLASMS: A CROSS-SPECIES STUDY
羟基脲对骨髓增生性肿瘤 DNA 甲基化和基因表达的影响:跨物种研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Stephania Contreras;B. Montibus;Azucena V. Rocha;William Duke;Ferdinand von;Meyenn;D. Mclornan;Claire Harrison;A. Mullally;R. Schulz;Rebecca J. Oakey - 通讯作者:
Rebecca J. Oakey
Beginner's luck – the first in vivo demonstration of functioning platelets; William Duke, 1910
初学者的运气——首次在体内展示功能性血小板,William Duke,1910 年
- DOI:
10.1111/j.1365-3148.2011.01126.x - 发表时间:
2012 - 期刊:
- 影响因子:1.5
- 作者:
William Duke - 通讯作者:
William Duke
Spatial multilevel analysis of individual, household, and community factors associated with COVID-19 vaccine hesitancy in the Dominican Republic
多米尼加共和国与 COVID-19 疫苗犹豫相关的个人、家庭和社区因素的空间多层次分析
- DOI:
10.1038/s41598-025-94653-3 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:3.900
- 作者:
Behzad Kiani;Benn Sartorius;Beatris Mario Martin;Angela Cadavid Restrepo;Helen J. Mayfield;Cecilia Then Paulino;Petr Jarolim;Micheal De St Aubin;Ronald Skews Ramm;Devan Dumas;Salome Garnier;Marie Caroline Etienne;Farah Peña;Gabriela Abdalla;Adam Kucharski;William Duke;Margaret Baldwin;Bernarda Henríquez;Lucia de la Cruz;Eric J. Nilles;Colleen L. Lau - 通讯作者:
Colleen L. Lau
William Duke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Duke', 18)}}的其他基金
MODULAR FORMS AND ANALYTIC NUMBER THEORY
模形式和解析数论
- 批准号:
1001527 - 财政年份:2010
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
EMSW21-RTG in Algebra and related fields at UCLA: innovations in a successful program
加州大学洛杉矶分校代数及相关领域的 EMSW21-RTG:成功项目的创新
- 批准号:
0838697 - 财政年份:2009
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
The Analytic Theory of Division Fields and Spectral L-functions
除法域和谱L函数的解析理论
- 批准号:
0355564 - 财政年份:2004
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705939 - 财政年份:1987
- 资助金额:
$ 41万 - 项目类别:
Fellowship Award
相似海外基金
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
NSF-BSF: AF: Small: New directions in geometric traversal theory
NSF-BSF:AF:小:几何遍历理论的新方向
- 批准号:
2317241 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Standard Grant
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
New Topologically Inspired Directions in Higher Representation Theory
更高表示理论中受拓扑启发的新方向
- 批准号:
2200419 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Continuing Grant
New Directions in Complexity Theory
复杂性理论的新方向
- 批准号:
RGPIN-2017-06399 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2021
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
New Directions in the Theory of Moduli
模理论的新方向
- 批准号:
RGPIN-2017-04156 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual
New Directions in Complexity Theory
复杂性理论的新方向
- 批准号:
RGPIN-2017-06399 - 财政年份:2020
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual