MODULAR FORMS AND ANALYTIC NUMBER THEORY
模形式和解析数论
基本信息
- 批准号:1001527
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project proposes to investigate several sets of problems that lie in the intersection of the theory of modular forms and analytic number theory.One set of problems concerns real quadratic analogues of singular moduli. Classical singular moduli are special values of the modular j-function at imaginary quadratic irrationalities and have well-known importance for class field theory and the theory of half-integral weight weakly holomorphic modular forms. The real quadratic analogues are defined through certain cycle integrals of the j-function. It is proposed to understand their possible relations to real quadratic fields as well as the asymptotic behavior of their ``traces'', which occur as Fourier coefficients of a new kind of mock modular form. Also to be investigated are new connections between the period functions of modular integrals and certain orthogonal polynomials. One problem here is to apply Riemann-Hilbert analysis to obtain strong asymptotics for the orthogonal polynomials associated to rational period functions. These polynomials are perturbations of Jacobi polynomials and generalize Atkin's polynomials. Another research topic is to study the distribution of roots of polynomial congruences using higher rank automorphic forms.Number theory, which is one of the oldest parts of mathematics, continues to enjoy remarkable advances today. The theory of modular forms occupies a central position within number theory and has proven to be a wellspring of new ideas both within number theory and in other parts of mathematics. The research proposed here is intended to contribute in a meaningful way to the theory of modular forms by developing new connections to analytic number theory as well as to other parts of analysis. An important component of this proposal is the integration of research and education at the postdoctoral, graduate and undergraduate levels.Several research problems that are suitable for undergraduates are proposed, and these will also involve the participation of the PI, graduate students, and postdocs. The aim is to help introduce the undergraduates to research and to develop the mentoring skills of the graduate students and postdocs. Other planned activities are designed to elevate the research experience of mathematics teachers who will be educating students at pre-research stages. These are intended to be cost-effective ways to benefit future research in mathematics in the United States.
本项目拟研究模形式理论与解析数论交叉的几组问题。一组问题涉及奇异模的实数二次类。经典奇异模是模j函数在虚二次无理数处的特殊值,在类场论和半积分权弱全纯模形式理论中具有众所周知的重要性。通过j函数的某些循环积分来定义实二次类。提出了它们与实二次域的可能关系,以及它们的“迹”的渐近行为,这些“迹”表现为一种新的模拟模形式的傅里叶系数。本文还研究了模积分的周期函数与某些正交多项式之间的新联系。这里的一个问题是应用黎曼-希尔伯特分析来获得与有理周期函数相关的正交多项式的强渐近性。这些多项式是雅可比多项式的扰动,是对阿特金多项式的推广。另一个研究课题是利用高阶自同构形式研究多项式同余根的分布。数论是数学中最古老的部分之一,今天继续享有显著的进步。模形式理论在数论中占有中心地位,并已被证明是数论和其他数学领域新思想的源泉。这里提出的研究旨在通过发展与解析数论以及分析的其他部分的新联系,以有意义的方式为模形式理论做出贡献。该提案的一个重要组成部分是博士后、研究生和本科水平的研究和教育的整合。提出了几个适合本科生的研究问题,这些问题也将涉及项目负责人、研究生和博士后的参与。其目的是帮助本科生进行研究,并培养研究生和博士后的指导技能。其他计划的活动旨在提高数学教师的研究经验,他们将在研究前阶段教育学生。这些都是经济有效的方法,有利于美国未来的数学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Duke其他文献
Siegel modular forms of small weight
重量轻的西格尔模块化形式
- DOI:
10.1007/s002080050137 - 发表时间:
1998 - 期刊:
- 影响因子:1.4
- 作者:
William Duke;Ö. Imamoḡlu - 通讯作者:
Ö. Imamoḡlu
Longitudinal changes in hand hygiene adherence among healthcare workers during the COVID-19 pandemic, Dominican Republic
多米尼加共和国 COVID-19 大流行期间医护人员手部卫生依从性的纵向变化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
C. D. Schnorr;Kathryn W. Roberts;E. C. Payano;Paloma Martínez Guzmán;M. De St. Aubin;Matthew Lozier;Salomé Garnier;D. Dumas;Kelsey McDavid;C. T. Then Paulino;R. Skewes;Christina Craig;E. Zielinski Gutiérrez;William Duke;Eric Nilles - 通讯作者:
Eric Nilles
HYDROXYCARBAMIDE EFFECT ON DNA METHYLATION AND GENE EXPRESSION IN MYELOPROLIFERATIVE NEOPLASMS: A CROSS-SPECIES STUDY
羟基脲对骨髓增生性肿瘤 DNA 甲基化和基因表达的影响:跨物种研究
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Stephania Contreras;B. Montibus;Azucena V. Rocha;William Duke;Ferdinand von;Meyenn;D. Mclornan;Claire Harrison;A. Mullally;R. Schulz;Rebecca J. Oakey - 通讯作者:
Rebecca J. Oakey
Beginner's luck – the first in vivo demonstration of functioning platelets; William Duke, 1910
初学者的运气——首次在体内展示功能性血小板,William Duke,1910 年
- DOI:
10.1111/j.1365-3148.2011.01126.x - 发表时间:
2012 - 期刊:
- 影响因子:1.5
- 作者:
William Duke - 通讯作者:
William Duke
Spatial multilevel analysis of individual, household, and community factors associated with COVID-19 vaccine hesitancy in the Dominican Republic
多米尼加共和国与 COVID-19 疫苗犹豫相关的个人、家庭和社区因素的空间多层次分析
- DOI:
10.1038/s41598-025-94653-3 - 发表时间:
2025-04-02 - 期刊:
- 影响因子:3.900
- 作者:
Behzad Kiani;Benn Sartorius;Beatris Mario Martin;Angela Cadavid Restrepo;Helen J. Mayfield;Cecilia Then Paulino;Petr Jarolim;Micheal De St Aubin;Ronald Skews Ramm;Devan Dumas;Salome Garnier;Marie Caroline Etienne;Farah Peña;Gabriela Abdalla;Adam Kucharski;William Duke;Margaret Baldwin;Bernarda Henríquez;Lucia de la Cruz;Eric J. Nilles;Colleen L. Lau - 通讯作者:
Colleen L. Lau
William Duke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Duke', 18)}}的其他基金
New Directions in the Theory of Automorphic Forms
自守形式理论的新方向
- 批准号:
1701638 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
EMSW21-RTG in Algebra and related fields at UCLA: innovations in a successful program
加州大学洛杉矶分校代数及相关领域的 EMSW21-RTG:成功项目的创新
- 批准号:
0838697 - 财政年份:2009
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
The Analytic Theory of Division Fields and Spectral L-functions
除法域和谱L函数的解析理论
- 批准号:
0355564 - 财政年份:2004
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8705939 - 财政年份:1987
- 资助金额:
$ 27万 - 项目类别:
Fellowship Award
相似海外基金
Analytic problems around automorphic forms and L-functions
围绕自守形式和 L 函数的分析问题
- 批准号:
2302210 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2344044 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Automorphic forms: arithmetic and analytic interfaces
自守形式:算术和分析接口
- 批准号:
2612135 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Studentship
Analytic Theory of Automorphic Forms and L-Functions
自守形式和 L 函数的解析理论
- 批准号:
2001183 - 财政年份:2020
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Distribution and Analytic Aspects of Cusp Forms
尖点形式的分布和分析方面
- 批准号:
1903301 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Cohomology of real-valued differential forms on Berkovich analytic spaces
Berkovich 解析空间上实值微分形式的上同调
- 批准号:
387554191 - 财政年份:2017
- 资助金额:
$ 27万 - 项目类别:
Research Fellowships
Various constructions of real analytic automorphic forms on real hyperbolic spaces and their application to various research fields
实双曲空间上实解析自守形式的各种构造及其在各个研究领域的应用
- 批准号:
16K05065 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic Continuation of p-adic automorphic forms and applications to the Langlands program
p 进自守形式的解析延拓及其在朗兰兹纲领中的应用
- 批准号:
RGPIN-2014-06640 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
Analytic Continuation of p-adic automorphic forms and applications to the Langlands program
p 进自守形式的解析延拓及其在朗兰兹纲领中的应用
- 批准号:
RGPIN-2014-06640 - 财政年份:2014
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual