Moduli of Rational Curves with Marked Points and Beyond

具有标记点及以上的有理曲线模

基本信息

  • 批准号:
    1701752
  • 负责人:
  • 金额:
    $ 16.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

This project concerns questions in algebraic geometry, one of the central areas in modern mathematics, with multiple connections to other areas (from complex analysis and topology to number theory) and with important applications in fields as diverse as coding theory, computer algebra, phylogenetics, and string theory. The fundamental objects of study in algebraic geometry are algebraic varieties, geometric manifestations of solutions of systems of polynomial equations. The variation of algebraic varieties of a given type is captured by "moduli spaces," whose points represent these algebraic varieties. This project is centered on moduli spaces whose points represent stable pointed rational curves, themselves algebraic varieties with a very rich structure. These moduli spaces form building blocks for more complex moduli spaces that play a key role in theoretical physics. The project has three different themes, related to the classification of algebraic varieties, establishing new connections with number theory, and deepening connections with physics. The ultimate goal is a broader understanding of algebraic varieties from three different perspectives. The projects stem from open questions surrounding the moduli space M(0,n): what are its effective cycles, what is its arithmetic intersection theory, and what is its derived category. A first project concerns the birational geometry of blow-ups of toric varieties. Until recently, very little was known about the failure of the Mori Dream Space property for blow-ups of toric varieties at a single general point. With recent new techniques, there is hope for further progress towards longstanding open questions on linear systems of curves on surfaces. The investigator also aims to develop the Arakelov theory of M(0,n) and establish a connection with birational geometry. Finally, the project aims to construct equivariant, full, exceptional collections on M(0,n) and related moduli spaces. Applications include an explicit understanding of the derived category of a range of other algebraic varieties.
该项目涉及代数几何问题,这是现代数学的中心领域之一,与其他领域(从复分析和拓扑学到数论)有多种联系,并在编码理论,计算机代数,遗传学和弦理论等领域有重要应用。代数几何的基本研究对象是代数簇,即多项式方程组解的几何表现。给定类型的代数簇的变化被“模空间”捕获,其点代表这些代数簇。这个项目是集中在模空间,其点代表稳定的尖有理曲线,本身具有非常丰富的结构代数品种。这些模空间形成了更复杂的模空间的构建块,这些模空间在理论物理中起着关键作用。该项目有三个不同的主题,涉及代数簇的分类,与数论建立新的联系,并加深与物理学的联系。最终目标是从三个不同的角度更广泛地理解代数簇。这些项目源于围绕模空间M(0,n)的公开问题:什么是它的有效圈,什么是它的算术交理论,什么是它的派生范畴。第一个项目涉及复曲面品种爆破的双有理几何。直到最近,很少有人知道Mori Dream Space属性在单个一般点上对复曲面品种的爆破失败。借助最近的新技术,人们希望在解决曲面上曲线的线性系统的长期悬而未决的问题方面取得进一步进展。研究者还旨在发展M(0,n)的Arakelov理论,并与双有理几何建立联系。最后,该项目的目标是在M(0,n)和相关的模空间上构造等变的、完整的、例外的集合。应用程序包括一个明确的理解派生类别的范围内的其他代数品种。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mori Dream Spaces and blow-ups of weighted projective spaces
Mori dream spaces and blow-ups
森的梦想空间和爆炸
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana-Maria Castravet其他文献

Hyperlogarithmic functional equations on del Pezzo surfaces
德尔佩佐曲面上的超对数泛函方程
  • DOI:
    10.1016/j.aim.2024.109567
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Ana-Maria Castravet;Luc Pirio
  • 通讯作者:
    Luc Pirio

Ana-Maria Castravet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana-Maria Castravet', 18)}}的其他基金

Rational curves and arithmetic
有理曲线和算术
  • 批准号:
    1529735
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Second Latin American School of Algebraic Geometry and Applications (II ELGA)
第二拉丁美洲代数几何与应用学院 (II ELGA)
  • 批准号:
    1502154
  • 财政年份:
    2015
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Rational curves and arithmetic
有理曲线和算术
  • 批准号:
    1302731
  • 财政年份:
    2013
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Mori Dream Spaces and Rational Curves
森梦空间与理性曲线
  • 批准号:
    1160626
  • 财政年份:
    2011
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Mori Dream Spaces and Rational Curves
森梦空间与理性曲线
  • 批准号:
    1001157
  • 财政年份:
    2010
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant

相似国自然基金

基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
  • 批准号:
    41804098
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
  • 批准号:
    61072105
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
  • 批准号:
    2302356
  • 财政年份:
    2023
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
Rational Curves on Fano Varieties
Fano 品种的有理曲线
  • 批准号:
    2101935
  • 财政年份:
    2021
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Research on Chern characters of Fano manifolds and higher order minimal families of rational curves
Fano流形及高阶有理曲线极小族陈省性研究
  • 批准号:
    21K13764
  • 财政年份:
    2021
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Weighted projective spaces and curves containing many rational points
包含许多有理点的加权射影空间和曲线
  • 批准号:
    551924-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Weighted projective spaces and curves containing many rational points
包含许多有理点的加权射影空间和曲线
  • 批准号:
    551923-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
  • 批准号:
    1945452
  • 财政年份:
    2020
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Continuing Grant
Homotopy types of spaces of rational curves on a toric manifold and related geometry
复曲面流形上有理曲线空间的同伦类型及相关几何
  • 批准号:
    18K03295
  • 财政年份:
    2018
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rational Points on Curves and Iterated p-adic Integrals
曲线上的有理点和迭代 p 进积分
  • 批准号:
    1702196
  • 财政年份:
    2017
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Standard Grant
Rational points and curves on K3 surfaces
K3 曲面上的有理点和曲线
  • 批准号:
    262265-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 16.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了