Rational curves and arithmetic
有理曲线和算术
基本信息
- 批准号:1529735
- 负责人:
- 金额:$ 8.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-02 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal presents several problems related to the geometry of algebraic varieties and their moduli. A first research objective is to study the birational geometry of the Grothendieck-Knudsen moduli space of stable rational curves, in particular, via arithmetic techniques; a sub-project is to develop the Arakelov theory of this space. A second objective is to prove that 2-Fano manifolds are rationally simply connected. This is an analogue of the celebrated Kollár-Miyaoka-Mori result that Fano manifolds are rationally connected. Using results of de Jong and Starr, a consequence will be a generalization of Tsen's theorem, namely, that a 2-Fano manifold defined over the function field of a surface has a rational point. This would give a natural geometric condition for the existence of rational points.The broader context of the project is the area of algebraic geometry, currently one of the most active branches of mathematics, with widespread applications throughout mathematics and reaching into physics and engineering. Algebraic geometry is the study of algebraic varieties, which are geometric objects given by the solutions of systems of polynomial equations. The variation of algebraic varieties is captured by the so-called moduli spaces, which are themselves algebraic varieties with a very rich structure. In the two main themes of this project, moduli spaces play a central role, both as spaces whose geometry we investigate, and as tools for answering questions about whether certain systems of polynomial equations have solutions or not. The expectation is that the projects will significantly impact other areas of mathematics, especially arithmetic geometry.
该建议提出了几个问题有关的几何代数簇和他们的模。第一个研究目标是研究稳定有理曲线的Grothendieck-Knudsen模空间的双有理几何,特别是通过算术技术;一个子项目是发展这个空间的Arakelov理论。第二个目标是证明2-Fano流形是有理单连通的。这是著名的Kollár-Miyaoka-Mori结果的一个类比,即Fano流形是有理连通的。利用德容和斯塔尔的结果,一个结论将是一个推广的森定理,即,一个2-法诺流形上定义的功能领域的一个表面有一个合理的点。这个项目的更广泛的背景是代数几何领域,目前数学中最活跃的分支之一,在整个数学中有广泛的应用,并深入到物理和工程领域。代数几何是研究代数簇的学科,代数簇是由多项式方程组的解给出的几何对象。代数簇的变化被所谓的模空间所捕获,模空间本身就是具有非常丰富结构的代数簇。在这个项目的两个主要主题中,模空间起着核心作用,既是我们研究的几何空间,也是回答某些多项式方程组是否有解的工具。期望这些项目将对数学的其他领域产生重大影响,特别是算术几何。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana-Maria Castravet其他文献
Hyperlogarithmic functional equations on del Pezzo surfaces
德尔佩佐曲面上的超对数泛函方程
- DOI:
10.1016/j.aim.2024.109567 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:1.500
- 作者:
Ana-Maria Castravet;Luc Pirio - 通讯作者:
Luc Pirio
Ana-Maria Castravet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana-Maria Castravet', 18)}}的其他基金
Moduli of Rational Curves with Marked Points and Beyond
具有标记点及以上的有理曲线模
- 批准号:
1701752 - 财政年份:2017
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Second Latin American School of Algebraic Geometry and Applications (II ELGA)
第二拉丁美洲代数几何与应用学院 (II ELGA)
- 批准号:
1502154 - 财政年份:2015
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
相似国自然基金
Lienard系统的不变代数曲线、可积性与极限环问题研究
- 批准号:12301200
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
- 批准号:
2401321 - 财政年份:2024
- 资助金额:
$ 8.34万 - 项目类别:
Continuing Grant
Rational points on modular curves, and the geometry of arithmetic statistics
模曲线上的有理点和算术统计的几何
- 批准号:
2302356 - 财政年份:2023
- 资助金额:
$ 8.34万 - 项目类别:
Continuing Grant
Moduli stacks: curves, stable reduction and arithmetic
模数堆栈:曲线、稳定归约和算术
- 批准号:
22KF0205 - 财政年份:2023
- 资助金额:
$ 8.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Geometry and Arithmetic of Brill--Noether Loci and Brill--Noether curves
布里尔-诺特轨迹和布里尔-诺特曲线的几何与算术
- 批准号:
2200655 - 财政年份:2022
- 资助金额:
$ 8.34万 - 项目类别:
Standard Grant
Computer Generation of Explicit Formulas for Jacobian Arithmetic on Hyperelliptic Curves
超椭圆曲线雅可比算术显式公式的计算机生成
- 批准号:
574796-2022 - 财政年份:2022
- 资助金额:
$ 8.34万 - 项目类别:
University Undergraduate Student Research Awards
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
- 批准号:
20K03517 - 财政年份:2020
- 资助金额:
$ 8.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic equivalence of modular curves and Shimura varieties
模曲线和 Shimura 簇的算术等价
- 批准号:
2272087 - 财政年份:2019
- 资助金额:
$ 8.34万 - 项目类别:
Studentship
Interdisciplinary research of arithmetic geometry and quantum field theory related to the moduli space of hyperbolic curves
双曲曲线模空间相关的算术几何与量子场论的跨学科研究
- 批准号:
18K13385 - 财政年份:2018
- 资助金额:
$ 8.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New methods in multiplicative number theory applied to number fields, elliptic curves, modular forms, and other arithmetic data
乘法数论的新方法应用于数域、椭圆曲线、模形式和其他算术数据
- 批准号:
502433-2017 - 财政年份:2018
- 资助金额:
$ 8.34万 - 项目类别:
Postdoctoral Fellowships
Arithmetic Statistics: Groups of Elliptic Curves and Abelian Varieties, and Zeroes of Families of Curves over Finite Fields.
算术统计:椭圆曲线群和阿贝尔簇,以及有限域上曲线族的零点。
- 批准号:
155635-2013 - 财政年份:2018
- 资助金额:
$ 8.34万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




