CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
基本信息
- 批准号:1704169
- 负责人:
- 金额:$ 34.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional signal estimation plays fundamental roles in various engineering and science applications, such as medical imaging, video and network surveillance. Estimation procedures that maintain both statistical and computational efficacy are of great practical value, which translate into desiderata such as less time patients need to spend in a medical scanner, faster response to cyber attacks, and capabilities to handle very large datasets. While a lot of signal estimation tasks are naturally formulated as nonconvex optimization problems, existing results for nonconvex methods have several fundamental limitations, and the current state of the art is still limited in terms of when, why and which nonconvex approaches are effective for a given problem. The goal of this research program is to significantly deepen and broaden the understanding and applications of nonconvex optimization for high-dimensional signal estimation.In this project, the investigators will study high-dimensional signal estimation via direct optimization of nonconvex, and potentially nonsmooth, loss functions, without resorting to convex relaxation. This research will explore geometric structures shared by nonconvex functions commonly encountered in signal estimation, and study the fundamental roles these structures play in determining the algorithmic convergence. These results will then be exploited as guidelines to develop fast and provably correct algorithms for estimating high-dimensional signals with physically induced structures and under streaming data observations. Specifically, the research program consists of three major thrusts: (1) understanding the geometric structures of important classes of nonconvex loss surfaces, and characterizing their impact on the convergence of optimization algorithms; (2) developing fast algorithms and the associated theory for the recovery of structured low-rank matrices; (3) designing new online algorithms that are time and space efficient under a streaming setting, with the capability of detecting and tracking the time-varying signals of interest.
高维信号估计在医学成像、视频和网络监控等各种工程和科学应用中起着重要的作用。保持统计和计算效率的估计程序具有很大的实用价值,这可以转化为所需的数据,例如减少患者在医疗扫描仪上花费的时间,更快地响应网络攻击,以及处理非常大的数据集的能力。虽然许多信号估计任务都被自然地表述为非凸优化问题,但现有的非凸方法的结果有几个基本的局限性,并且目前的技术状态仍然局限于何时,为什么以及哪种非凸方法对给定问题有效。本研究计划的目标是显著加深和拓宽对高维信号估计的非凸优化的理解和应用。在这个项目中,研究人员将通过直接优化非凸和潜在的非光滑损失函数来研究高维信号估计,而无需求助于凸松弛。本研究将探索信号估计中常见的非凸函数共享的几何结构,并研究这些结构在决定算法收敛性方面所起的基本作用。然后,这些结果将作为指导方针,用于开发快速且可证明正确的算法,用于估计具有物理诱导结构和流数据观测的高维信号。具体而言,研究计划包括三个主要重点:(1)了解重要类别的非凸损失曲面的几何结构,并表征其对优化算法收敛性的影响;(2)开发了结构化低秩矩阵恢复的快速算法和相关理论;(3)设计新的在线算法,该算法在流设置下具有时间和空间效率,具有检测和跟踪感兴趣的时变信号的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingbin Liang其他文献
A New Perspective of Proximal Gradient Algorithms
近端梯度算法的新视角
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yi Zhou;Yingbin Liang;Lixin Shen - 通讯作者:
Lixin Shen
On the Equivalence of Two Achievable Regions for the Broadcast Channel
广播频道两个可达到区域的等效性
- DOI:
10.1109/tit.2010.2090236 - 发表时间:
2011 - 期刊:
- 影响因子:2.5
- 作者:
Yingbin Liang;G. Kramer;H. Poor - 通讯作者:
H. Poor
Capacity bounds for a class of cognitive interference channels with state
一类具有状态的认知干扰信道的容量界限
- DOI:
10.1109/allerton.2011.6120223 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ruchen Duan;Yingbin Liang - 通讯作者:
Yingbin Liang
Layered secure broadcasting over MIMO channels and application in secret sharing
MIMO信道分层安全广播及其在秘密共享中的应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Yingbin Liang;L. Lai;S. Shamai - 通讯作者:
S. Shamai
Gaussian fading channel with secrecy outside a bounded range
在有界范围外具有保密性的高斯衰落信道
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Yingbin Liang;S. Shamai - 通讯作者:
S. Shamai
Yingbin Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingbin Liang', 18)}}的其他基金
RINGS: A Deep Reinforcement Learning Enabled Large-scale UAV Network with Distributed Navigation, Mobility Control, and Resilience
RINGS:深度强化学习支持的大规模无人机网络,具有分布式导航、移动控制和弹性
- 批准号:
2148253 - 财政年份:2022
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
- 批准号:
2113860 - 财政年份:2021
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
- 批准号:
2134145 - 财政年份:2021
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
- 批准号:
1909291 - 财政年份:2019
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1900145 - 财政年份:2019
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1761506 - 财政年份:2017
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
- 批准号:
1801855 - 财政年份:2017
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1801846 - 财政年份:2017
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Management of Mobile Phone Sensing via Sparse Learning
通过稀疏学习管理手机传感
- 批准号:
1818904 - 财政年份:2017
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
- 批准号:
1618127 - 财政年份:2016
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 34.23万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312228 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 34.23万 - 项目类别:
Continuing Grant