Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks

合作研究:SCALE MoDL:深度神经网络的适应性

基本信息

  • 批准号:
    2134145
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

The overarching theme of the project is to systematically expand understanding of how deep neural networks (DNNs) work and why or when they are better than classical methods through the lens of "adaptivity." Adaptivity refers to the properties of an algorithm that take advantage of favorable structures in the input data without knowing that these structures exist. That is, adaptive algorithms are those that are free of tuning parameters and could automatically configure themselves to adapt to each input data. The anticipated outcome of the project includes a new theory that explains and quantifies the adaptivity of popular DNN models such as multi-layer perceptrons, self-attention mechanisms (namely, transformer models), and meta-learning. The theory could result in substantial savings in the statistical and computational complexity of these models, allowing them to be applied in resource-constrained settings and to have more environmentally friendly energy footprint. This project will also provide opportunities for students and postdocs to explore interdisciplinary research topics related to deep learning.Specifically, this project investigates (1) the "local adaptivity" of DNNs in estimating functions from noisy data; (2) the "relational adaptivity" of self-attention mechanism that parses a structure data point (such as an image or a chunk of text); and (3) the "task adaptivity" of multi-task and meta-learning algorithms that learn to share information across multiple tasks. The research covers some of the most popular DNN models. Technically the project leverages multiple branches of mathematics (such as function classes, nonparametric statistics, statistical learning theory, optimization, and compressed sensing) and involves innovations in the approximation-theoretic understanding, algorithmic insights, and statistical theory of DNNs. The new analytical tools to be developed are also of independent interest to the broader machine learning theory community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的首要主题是通过“适应性”的透镜系统地扩展对深度神经网络(DNN)如何工作以及它们为什么或何时优于经典方法的理解。自适应性是指算法的特性,它利用输入数据中的有利结构,而不知道这些结构的存在。也就是说,自适应算法是那些不需要调整参数,并且可以自动配置自己以适应每个输入数据的算法。该项目的预期成果包括一个新的理论,该理论解释和量化了流行的DNN模型的自适应性,如多层感知器、自注意机制(即Transformer模型)和元学习。该理论可以大大节省这些模型的统计和计算复杂性,使它们能够应用于资源受限的环境,并具有更环保的能源足迹。本项目亦将为学生及博士后提供机会,探讨与深度学习相关的跨学科研究课题。具体而言,本项目研究(1)DNN在从噪声数据中估计函数时的“局部自适应性”;(2)自注意机制解析结构数据点时的“关系自适应性(例如图像或文本块);以及(3)多任务和元学习算法的“任务适应性”,这些算法学习跨多个任务共享信息。该研究涵盖了一些最流行的DNN模型。从技术上讲,该项目利用了数学的多个分支(如函数类,非参数统计,统计学习理论,优化和压缩感知),并涉及近似理论理解,算法见解和DNN统计理论的创新。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Provable Generalization of Overparameterized Meta-learning Trained with SGD
  • DOI:
    10.48550/arxiv.2206.09136
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Huang;Yingbin Liang;Longbo Huang-
  • 通讯作者:
    Yu Huang;Yingbin Liang;Longbo Huang-
Provably Efficient Algorithm for Nonstationary Low-Rank MDPs
  • DOI:
    10.48550/arxiv.2308.05471
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Cheng;J. Yang;Yitao Liang
  • 通讯作者:
    Yuan Cheng;J. Yang;Yitao Liang
Model-Based Offline Meta-Reinforcement Learning with Regularization
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sen Lin;Jialin Wan;Tengyu Xu;Yingbin Liang;Junshan Zhang
  • 通讯作者:
    Sen Lin;Jialin Wan;Tengyu Xu;Yingbin Liang;Junshan Zhang
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
  • DOI:
    10.48550/arxiv.2303.00039
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junjie Yang;Xuxi Chen;Tianlong Chen;Zhangyang Wang;Yitao Liang
  • 通讯作者:
    Junjie Yang;Xuxi Chen;Tianlong Chen;Zhangyang Wang;Yitao Liang
Non-stationary Reinforcement Learning under General Function Approximation
  • DOI:
    10.48550/arxiv.2306.00861
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Songtao Feng;Ming Yin;Ruiquan Huang;Yu-Xiang Wang;J. Yang;Yitao Liang
  • 通讯作者:
    Songtao Feng;Ming Yin;Ruiquan Huang;Yu-Xiang Wang;J. Yang;Yitao Liang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingbin Liang其他文献

A New Perspective of Proximal Gradient Algorithms
近端梯度算法的新视角
On the Equivalence of Two Achievable Regions for the Broadcast Channel
广播频道两个可达到区域的等效性
Capacity bounds for a class of cognitive interference channels with state
一类具有状态的认知干扰信道的容量界限
Gaussian fading channel with secrecy outside a bounded range
在有界范围外具有保密性的高斯衰落信道
Layered secure broadcasting over MIMO channels and application in secret sharing
MIMO信道分层安全广播及其在秘密共享中的应用

Yingbin Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingbin Liang', 18)}}的其他基金

RINGS: A Deep Reinforcement Learning Enabled Large-scale UAV Network with Distributed Navigation, Mobility Control, and Resilience
RINGS:深度强化学习支持的大规模无人机网络,具有分布式导航、移动控制和弹性
  • 批准号:
    2148253
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
  • 批准号:
    2113860
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909291
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    1900145
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1761506
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
  • 批准号:
    1801855
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1704169
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1801846
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Management of Mobile Phone Sensing via Sparse Learning
通过稀疏学习管理手机传感
  • 批准号:
    1818904
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1618127
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307251
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Scale Wireless RF Networks of Microchip Sensors
合作研究:微芯片传感器的大规模无线射频网络
  • 批准号:
    2322601
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了