CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks

CIF:媒介:协作研究:神经网络优化几何理论和算法

基本信息

  • 批准号:
    1900145
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

Deep learning has attracted a significant amount of interest in recent years due to its widespread applicability in computer vision, artificial intelligence and natural language processing, alongside recent strides in autonomous driving. The theoretical underpinnings behind such success, however, remain elusive to a large extent, hindering its further adoption in other applications. This project aims to advance the theoretical foundations of training neural networks in terms of optimization landscape and algorithmic efficacy, which in turn should have a measurable impact on the practice of deep learning by providing guiding principles for network design, algorithm selection, hyperparameter tuning, and adversarial training. This project adopts an interdisciplinary approach fusing ideas from machine learning, optimization, statistical signal processing, high-dimensional statistics, nonparametric statistics, and information theory. This project will likewise develop courses and tutorials on theoretical foundations of large-scale machine learning and provide extensive training opportunities for students at all levels.This project aims to develop a comprehensive theory to characterize the optimization landscape and geometry of loss functions and algorithmic regularizations of major neural network training problems, and explore how the network architecture---including depth, width, and activation functions---affect these properties, thus providing guidelines for the design of algorithms to train these networks more efficiently with theoretical performance guarantees. The project will explore the geometric properties and their impact on the optimization performance in training multi-layer neural networks, auto-encoders, generative adversarial networks, and adversarial training involving non-convex and saddle-point problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,深度学习吸引了大量的兴趣,因为它在计算机视觉、人工智能和自然语言处理方面的广泛应用,以及最近在自动驾驶方面的进步。然而,这种成功背后的理论基础在很大程度上仍然难以捉摸,阻碍了它在其他应用中的进一步采用。该项目旨在从优化景观和算法效率方面推进训练神经网络的理论基础,通过为网络设计、算法选择、超参数调整和对抗性训练提供指导原则,这反过来应该对深度学习的实践产生可衡量的影响。该项目采用跨学科的方法,融合了机器学习,优化,统计信号处理,高维统计,非参数统计和信息论的思想。该项目还将开发大规模机器学习理论基础的课程和教程,并为各级学生提供广泛的培训机会。该项目旨在开发一套全面的理论来表征主要神经网络训练问题的损失函数和算法正则化的优化景观和几何结构,并探索网络架构如何--包括深度、宽度、和激活函数-影响这些属性,从而为算法的设计提供指导,以在理论性能保证的情况下更有效地训练这些网络。该项目将探索几何属性及其对训练多层神经网络、自动编码器、生成对抗网络和涉及非凸和鞍点问题的对抗训练的优化性能的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deterministic policy gradient: Convergence analysis
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huaqing Xiong;Tengyu Xu;Lin Zhao;Yingbin Liang;Wei Zhang
  • 通讯作者:
    Huaqing Xiong;Tengyu Xu;Lin Zhao;Yingbin Liang;Wei Zhang
When will gradient methods converge to max‐margin classifier under ReLU models?
  • DOI:
    10.1002/sta4.354
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Tengyu Xu;Yi Zhou;Kaiyi Ji;Yingbin Liang
  • 通讯作者:
    Tengyu Xu;Yi Zhou;Kaiyi Ji;Yingbin Liang
Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms
  • DOI:
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tengyu Xu;Zhe Wang-;Yingbin Liang
  • 通讯作者:
    Tengyu Xu;Zhe Wang-;Yingbin Liang
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyi Chen;Yi Zhou;Yingbin Liang;Zhaosong Lu
  • 通讯作者:
    Ziyi Chen;Yi Zhou;Yingbin Liang;Zhaosong Lu
Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaiyi Ji;J. Lee;Yingbin Liang;H. Poor
  • 通讯作者:
    Kaiyi Ji;J. Lee;Yingbin Liang;H. Poor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingbin Liang其他文献

On the Equivalence of Two Achievable Regions for the Broadcast Channel
广播频道两个可达到区域的等效性
Capacity bounds for a class of cognitive interference channels with state
一类具有状态的认知干扰信道的容量界限
A New Perspective of Proximal Gradient Algorithms
近端梯度算法的新视角
Gaussian fading channel with secrecy outside a bounded range
在有界范围外具有保密性的高斯衰落信道
Layered secure broadcasting over MIMO channels and application in secret sharing
MIMO信道分层安全广播及其在秘密共享中的应用

Yingbin Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingbin Liang', 18)}}的其他基金

RINGS: A Deep Reinforcement Learning Enabled Large-scale UAV Network with Distributed Navigation, Mobility Control, and Resilience
RINGS:深度强化学习支持的大规模无人机网络,具有分布式导航、移动控制和弹性
  • 批准号:
    2148253
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCSS: Learning to Optimize: From New Algorithms to New Theory
合作研究:CCSS:学习优化:从新算法到新理论
  • 批准号:
    2113860
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: SCALE MoDL: Adaptivity of Deep Neural Networks
合作研究:SCALE MoDL:深度神经网络的适应性
  • 批准号:
    2134145
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Acceleration Algorithms for Large-scale Nonconvex Optimization
CIF:小型:协作研究:大规模非凸优化的加速算法
  • 批准号:
    1909291
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Network Event Detection with Multistream Observations
CIF:小型:协作研究:通过多流观察进行网络事件检测
  • 批准号:
    1801855
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1761506
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1704169
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1801846
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Management of Mobile Phone Sensing via Sparse Learning
通过稀疏学习管理手机传感
  • 批准号:
    1818904
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Secret Key Generation Under Resource Constraints
CIF:小型:协作研究:资源限制下的密钥生成
  • 批准号:
    1618127
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

基于水头损失效应的溶洞-管流-裂隙-孔隙介质中水动力学渗流模型
  • 批准号:
    JCZRYB202501319
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型石榴石基高熵微波介质陶瓷结构与性能调控研究
  • 批准号:
    JCZRLH202500653
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
高超声速飞行器跨介质超视距电波传播机理与统一信道建模方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
面向冶炼中高温余热利用的熔融介质模块式储换热一体化技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
多孔介质中全/多氟化合物污染物迁移机制及模型研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
跨介质量子增强探测技术-跨介质量子增强探测技术研究
  • 批准号:
    2025C02029
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
极地海域跨介质零功耗温度感知的热-电-力耦合机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于变磁通记忆电机的跨介质飞行器一 体化电推进技术研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    100.0 万元
  • 项目类别:
    省市级项目
面向肺部疾病无创快速诊断的多孔介质 电渗诱导EBC微流控方法研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
微尺度双电层效应下多孔介质内油-水两 相流输运机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了