High Performance Polymer Electrolytes through High Dielectric Polymers and Blends

通过高介电聚合物和混合物提供高性能聚合物电解质

基本信息

  • 批准号:
    1706968
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

High capacity batteries are key to increasing the range and performance of sustainable transportation technologies. The use of polymer electrolytes is a promising strategy to increase the capacity and safety of lithium batteries. This combined theoretical and experimental project will fill the gaps in fundamental understanding of ion conduction in pure polymers and their blends to improve performance for real-world applications. A polymer blending strategy enables the combination of favorable characteristics at blend compositions that maximize electrolyte performance. The combined use of theory and experiment in this project increases the efficiency of discovery, the depth of fundamental understanding, and speeds progress on this economically and environmentally important field of research in energy storage. The results of the proposed fundamental research will be directly applicable to development of more efficiently conducting polymer electrolytes for deployment in lithium batteries. Such advances can potentially impact applications as diverse as cellphone batteries, development of electric cars, and large scale grid storage. To complement the research efforts, the PIs will carry out educational and outreach activities. These will include graduate and undergraduate student research initiatives aimed at synergistic theoretical-experimental activities, the development of a new educational module on polymer electrolytes and sustainable energy resources, and outreach efforts on sustainable energy and batteries that are directed towards K-12 audiences.Given the advantages of polymer electrolytes in the context of lithium batteries, the continuing challenge for macromolecular electrolytes has been to increase ionic conductivity. The project will present new concepts which motivate the design of new materials that would both advance fundamental understanding of polymer electrolytes and enable appreciable improvements in storage capacity. The overall hypothesis of the research program is predicated on the observation that ionic conductivity in a homologous series of polyethers was shown to depend primarily on the dielectric constant and not glass-transition temperature or viscosity of the parent polymer. Significantly, this suggested the hypothesis that there could be parametric regimes or classes of polymeric materials in which the transport of ions is only limited by the solubility and dissociation of the ions themselves, and that further increases in ionic conductivity would be possible by enhancing the inherent dielectric constant of the material. Ultimately, increases in dielectric constant may be accompanied by an increase in the glass-transition temperature and that the resulting slow segmental dynamics of the polymer will hinder ion conduction. The project includes study of blends of high-dielectric polymeric materials with low-viscosity analogs to achieve further enhancement in ion conductivities not limited by polymer segmental dynamics. The ultimate result of the integrated study on ion transport in polymer materials will identify the importance of the polymer dielectric constant upon ion conductivities, and provide a new quantitative understanding of ion transport as a function of polymer properties. Furthermore, the research will exploit the non-ideal conductivity characteristics of blends that will lead to a new understanding of the conductivity characteristics of polymer mixtures and may unite the understanding of ion transport in polymer electrolytes with those of small molecule electrolytes.
高容量电池是增加可持续交通技术的范围和性能的关键。聚合物电解质的使用是提高锂电池容量和安全性的一种有前途的策略。这个理论和实验相结合的项目将填补纯聚合物及其共混物中离子传导的基本理解的空白,以提高实际应用的性能。聚合物共混策略能够在最大化电解质性能的共混组合物中组合有利的特性。在该项目中,理论和实验的结合使用提高了发现的效率,加深了对基础知识的理解,并加快了这一经济和环境重要的储能研究领域的进展。拟议的基础研究的结果将直接适用于开发更有效的导电聚合物电解质,用于锂电池。这些进步可能会影响手机电池、电动汽车开发和大规模电网存储等多种应用。为配合研究工作,首席执行官将开展教育和外联活动。这将包括研究生和本科生的研究举措,旨在协同理论实验活动,开发一个新的教育模块的聚合物电解质和可持续能源,并推广工作的可持续能源和电池,针对K-12观众。鉴于聚合物电解质的优势,在锂电池的背景下,对大分子电解质的持续挑战是增加离子电导率。该项目将提出新的概念,推动新材料的设计,既能促进对聚合物电解质的基本理解,又能显著提高存储容量。研究计划的总体假设是基于这样的观察,即在聚醚的同源系列中的离子电导率被证明主要取决于介电常数,而不是母体聚合物的玻璃化转变温度或粘度。值得注意的是,这提出了一种假设,即可能存在参数机制或聚合物材料类别,其中离子的传输仅受离子本身的溶解度和解离的限制,并且通过提高材料的固有介电常数可以进一步增加离子电导率。最终,介电常数的增加可能伴随着玻璃化转变温度的增加,并且所产生的聚合物的缓慢链段动力学将阻碍离子传导。该项目包括研究高介电聚合物材料与低粘度类似物的共混物,以进一步提高离子电导率,而不受聚合物链段动力学的限制。聚合物材料中离子传输的综合研究的最终结果将确定聚合物介电常数对离子电导率的重要性,并提供一个新的定量理解离子传输作为聚合物性能的函数。此外,该研究将利用共混物的非理想电导率特性,这将导致对聚合物混合物的电导率特性的新理解,并可能将聚合物电解质中的离子传输的理解与小分子电解质的理解结合起来。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Multiscale Simulation Study of Influence of Morphology on Ion Transport in Block Copolymeric Ionic Liquids
  • DOI:
    10.1021/acs.macromol.1c00025
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Zidan Zhang;Jakub Krajniak;V. Ganesan
  • 通讯作者:
    Zidan Zhang;Jakub Krajniak;V. Ganesan
Design of Polymer Blend Electrolytes through a Machine Learning Approach
  • DOI:
    10.1021/acs.macromol.0c01547
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Bill K. Wheatle;Erick F. Fuentes;Nathaniel A. Lynd;V. Ganesan
  • 通讯作者:
    Bill K. Wheatle;Erick F. Fuentes;Nathaniel A. Lynd;V. Ganesan
Effect of Polymer Polarity on Ion Transport: A Competition between Ion Aggregation and Polymer Segmental Dynamics
  • DOI:
    10.1021/acsmacrolett.8b00594
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Wheatle, Bill K.;Lynd, Nathaniel A.;Ganesan, Venkat
  • 通讯作者:
    Ganesan, Venkat
Ion transport in polymeric ionic liquids: recent developments and open questions
Influence of Counterion Structure on Conductivity of Polymerized Ionic Liquids
  • DOI:
    10.1021/acsmacrolett.9b00070
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    7.015
  • 作者:
    Keith, Jordan R.;Rebello, Nathan J.;Ganesan, Venkat
  • 通讯作者:
    Ganesan, Venkat
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Lynd其他文献

Synthetic Polymers As Extracellular Cryoprotectants
  • DOI:
    10.1016/j.cryobiol.2019.10.092
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aaron Burkey;Dale Harris;Jacob Baltzegar;Alex Hillsley;Diana Zhang;William Sprague;Natalie Czarnecki;Adrianne Rosales;Nathaniel Lynd
  • 通讯作者:
    Nathaniel Lynd
Design And Synthesis Of New Polymer-Based Cryoprotectants For Frozen Storage Of Mammalian Cells
  • DOI:
    10.1016/j.cryobiol.2019.10.089
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nathaniel Lynd;Aaron Burkey;Dale Harris;Jacob Baltzegar;Alex Hillsley;Diana Zhang;William Sprague;Malgorzata Chwatko;Natalie Czarnecki;Adrianne Rosales
  • 通讯作者:
    Adrianne Rosales

Nathaniel Lynd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Lynd', 18)}}的其他基金

CAS: Lewis Pair Catalyst Platform for Functional Polyether Synthesis
CAS:用于功能性聚醚合成的路易斯对催化剂平台
  • 批准号:
    2004167
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Travel Support for the 256th National Meeting and Exposition of the American Chemical Society Symposium "Block Polymer Synthesis and Self-Assembly", Boston, MA (August 19-23, 2018)
美国化学会第 256 届全国会议暨博览会“嵌段聚合物合成与自组装”研讨会的差旅支持,马萨诸塞州波士顿(2018 年 8 月 19 日至 23 日)
  • 批准号:
    1836411
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design of novel polymer electrolytes for solid state sodium batteries.
固态钠电池新型聚合物电解质的设计。
  • 批准号:
    DP240101661
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
Establishment of polymer informatics incorporating polymer-specific hierarchy and search for new electrolytes
建立结合聚合物特定层次结构的聚合物信息学并寻找新的电解质
  • 批准号:
    23H02027
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing Polymer Electrolytes for Operational All-Solid-State Batteries
开发适用于全固态电池的聚合物电解质
  • 批准号:
    DE230101105
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries
合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响
  • 批准号:
    2125640
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Dynamical Ion Correlations in Polymer Electrolytes
聚合物电解质中的动态离子相关性
  • 批准号:
    2225167
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Engineering and Evaluating the End-Group Assisted Electrodeposition of Conformal Polymer Electrolytes for Ultrathin-Film Batteries
超薄膜电池共形聚合物电解质端基辅助电沉积的工程设计和评估
  • 批准号:
    2146597
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Multifunctional Zwitterionic Solid Polymer Electrolytes for High-Performance Lithium-Ion Batteries
用于高性能锂离子电池的多功能两性离子固体聚合物电解质
  • 批准号:
    2224253
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Functional Polymer Electrolytes for Lithium Metal Batteries
锂金属电池用功能性聚合物电解质
  • 批准号:
    567684-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Postdoctoral Fellowships
Polymer electrolytes for solid-state, thin, and flexible printed electronics
用于固态、薄型和柔性印刷电子产品的聚合物电解质
  • 批准号:
    572646-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Effect of Cyclic Mechanical Stress on Ionic Conduction in Composite Polymer Electrolytes for Solid-State Batteries
合作研究:循环机械应力对固态电池复合聚合物电解质离子传导的影响
  • 批准号:
    2125192
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了