Gauge Theory on Manifolds with Special Holonomy
特殊完整流形的规范理论
基本信息
- 批准号:1707284
- 负责人:
- 金额:$ 15.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gauge theory is a subject that originated at the interface of mathematics and high energy physics. In special cases, gauge theory is believed to underlie the mathematical description of the universe; for example, the standard model for particle physics is a gauge theory in four dimensions. The subject also has deep links with many areas of mathematics, including partial differential equations, representation theory, algebraic geometry, differential geometry and topology. However, most research in gauge theory and almost all applications so far have focused on dimensions two, three and four. In this project, the PI intends to push the boundary of our understanding of gauge theory in higher dimensions. The PI's results are expected to have wide implications for geometric analysis, because the fundamental system of equations that define gauge theory (the Yang-Mills equations) poses additional challenges, in terms of controlling the solutions, that are not present in lower dimensions. The PI's work will also have impact through integrated research and training, as the PI plans to involve undergraduates in research opportunities related to his project.The PI's research project consists of three parts. The first part of the project will extend this dictionary between gauge theory and complex algebraic geometry to the context of Hermitian-Yang Mills connections with singularities, and specifically understand the fine structure at the singularities in terms of the complex algebraic geometry of the corresponding reflexive sheaves. In the second part of this project, the PI will develop a deformation theory for a certain class of Yang-Mills connections called G2-instantons with one-dimensional singular set, and use this to construct concrete examples of singular G2-instantons from algebro-geometric input. The third part of the PI's research project will further explore the role that generalized Seiberg-Witten equations (specifically the ones discovered in joint work of Andriy Haydys and the PI) play in gauge theory in higher dimensions. As alluded to above, the main obstacle to progress in gauge theory in higher dimension is our lack of understanding of the non-compactness issues arising from the fact that the Yang-Mills equations become super-critical starting in dimension five and leading to the formation of non-removable singularities and bubbling phenomena.
规范理论是一门起源于数学和高能物理学的交叉学科。 在特殊情况下,规范理论被认为是宇宙数学描述的基础;例如,粒子物理学的标准模型是四维规范理论。 该学科也与数学的许多领域有着深刻的联系,包括偏微分方程,表示论,代数几何,微分几何和拓扑学。然而,迄今为止,规范理论的大多数研究和几乎所有的应用都集中在二维、三维和四维上。 在这个项目中,PI打算推动我们对更高维度规范理论的理解。 PI的结果预计将对几何分析产生广泛的影响,因为定义规范理论的基本方程系统(杨-米尔斯方程)在控制解方面提出了额外的挑战,这些挑战在较低维度中不存在。 PI的工作还将通过综合研究和培训产生影响,因为PI计划让本科生参与与其项目相关的研究机会。PI的研究项目包括三个部分。 该项目的第一部分将扩展规范理论和复代数几何之间的字典到厄米-杨米尔斯与奇点的连接,并特别理解在奇点处的精细结构,在相应的自反层的复代数几何方面。在这个项目的第二部分,PI将为一类称为G2-瞬子的Yang-Mills连接开发一个变形理论,并使用它从代数几何输入中构造奇异G2-瞬子的具体例子。PI研究项目的第三部分将进一步探索广义Seiberg-Witten方程(特别是Andriy Haydys和PI联合工作中发现的方程)在高维规范理论中的作用。 如上所述,在高维规范理论中取得进展的主要障碍是我们缺乏对非紧性问题的理解,这些问题是由杨-米尔斯方程从五维开始变得超临界并导致形成不可移除的奇点和冒泡现象而引起的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Walpuski其他文献
McKay correspondence and tautological bundles on ALE crepant resolutions
关于 ALE crepant 决议的麦凯信件和同义反复捆绑
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. Degeratu;Thomas Walpuski - 通讯作者:
Thomas Walpuski
Arithmetic conditions for the existence of G2–instantons over twisted connected sums
扭曲连通和上 G2 瞬时存在的算术条件
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Thomas Walpuski - 通讯作者:
Thomas Walpuski
Notes on the octonions
关于八元数的注释
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
D. Salamon;Thomas Walpuski - 通讯作者:
Thomas Walpuski
Gauge theory on G2–manifolds
G2 流形的规范理论
- DOI:
10.25560/14365 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Thomas Walpuski - 通讯作者:
Thomas Walpuski
Thomas Walpuski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Walpuski', 18)}}的其他基金
Gauge Theory on Manifolds with Special Holonomy
特殊完整流形的规范理论
- 批准号:
1754967 - 财政年份:2017
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Gauge Theory and Invariants of Symplectic Manifolds
规范理论和辛流形不变量
- 批准号:
2104919 - 财政年份:2021
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
- 批准号:
450239775 - 财政年份:2020
- 资助金额:
$ 15.2万 - 项目类别:
Heisenberg Grants
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
- 批准号:
1949209 - 财政年份:2019
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Diffeomorphism and homeomorphism groups of 4-manifolds and gauge theory for families
4流形的微分同胚和同胚群以及族规范理论
- 批准号:
19K23412 - 财政年份:2019
- 资助金额:
$ 15.2万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
- 批准号:
401366423 - 财政年份:2018
- 资助金额:
$ 15.2万 - 项目类别:
Research Grants
Gauge Theory and Trivalent Graphs in Three-Manifolds
三流形中的规范理论和三价图
- 批准号:
1808794 - 财政年份:2018
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Instanton gauge theory, knot invariants, and 3-manifolds
瞬时规范理论、结不变量和 3 流形
- 批准号:
347572477 - 财政年份:2017
- 资助金额:
$ 15.2万 - 项目类别:
Heisenberg Fellowships
Gauge Theory, Floer Homology, and Invariants of Low-Dimensional Manifolds
规范理论、Floer 同调和低维流形不变量
- 批准号:
1707857 - 财政年份:2017
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Gauge Theory on Manifolds with Special Holonomy
特殊完整流形的规范理论
- 批准号:
1754967 - 财政年份:2017
- 资助金额:
$ 15.2万 - 项目类别:
Continuing Grant
Quantum topology and invariants of knots and 3-manifolds related to gauge theory
量子拓扑以及与规范理论相关的结和三流形的不变量
- 批准号:
16K13754 - 财政年份:2016
- 资助金额:
$ 15.2万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research