One-Dimensional Gases of Dysprosium
一维镝气体
基本信息
- 批准号:1707336
- 负责人:
- 金额:$ 48.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study the interface between quantum mechanics and thermodynamics. This is a cutting edge research direction because the way quantum systems come into equilibrium, or "thermalize", remains a mystery. The picture is clearer for isolated classical systems. For example, in classical dynamics if a system of interacting particles explores all possible configurations, then it can thermalize. Such a system is also said to be "chaotic" and to lack "integrability", which means the particle trajectories cannot be predicted with a sequence of integrals. For integrable systems, future dynamics can be predicted. Interestingly, however, if the conditions for integrability are weakly broken, there are still scenarios for which stable dynamics can be predicted. This is a consequence of the celebrated Kolmogorov-Arnold-Moser (KAM) theorem, which shows that small perturbations are insufficient to render the system chaotic. This effect is largely responsible for the orbital stability for our own solar system. Since quantum physics describes dynamics too, it is natural to ask if there is an analogue to the KAM theorem for quantum systems. This project will explore this question by first creating a quantum integrable system using a gas of ultracold atoms confined in one-dimensional traps. Changes to the system's behavior will then be caused by adjusting magnetic long-range interactions between the atoms. The time it takes for the gas to thermalize after a momentum kick will provide a measure of the breakdown of integrability in the system. This work will have an impact on quantum information processing, and other technologies that rely on the predictability of quantum dynamics. Students working on this project will also benefit from research training that will prepare them for jobs in high tech industry or academic careers.To achieve these goals, this team will confine atoms of dysprosium (Dy), the most magnetic element, in two-dimensional optical lattices. The energy gap to the first transverse motional excited state will be larger than the gas temperature and chemical potential, ensuring that the gas in each cigar-shaped tube is in the quasi-1D regime. For large-enough scattering lengths, the gas will approximately realize the Tonks-Girardeau limit of the integrable Lieb-Liniger model. A magnetic field will set the angle of the dipoles with respect to the tube axis. The magnitude of the magnetic dipole-dipole interaction can be tuned by this angle, allowing us to control the integrability-breaking perturbation strength. A Bragg diffraction pulse will split the gas in two. These parts of the gas will collide every 10 ms due to weak longitudinal harmonic confinement. This dipolar version of the quantum Newton's cradle experiment will allow this team to explore analogs of the classical KAM scenario in the quantum realm. Moreover, spin-orbit coupling (previously demonstrated by this group with Dy) will be introduced in attempts to induce p-wave superfluidity near Feshbach resonances in one-dimensional gases of fermionic Dy. In this way, one-dimensional atomic systems will be used to explore novel types of superfluids that arise when the spin of the atom depends on the direction the atom is moving. This is important because exotic superfluids such as these support unusual excitations that may be useful for quantum information processing.
这个项目将研究量子力学和热力学之间的界面。 这是一个前沿的研究方向,因为量子系统进入平衡或“热化”的方式仍然是一个谜。 对于孤立的经典系统,这幅图更为清晰。 例如,在经典动力学中,如果一个相互作用的粒子系统探索了所有可能的构型,那么它就可以热化。 这样的系统也被称为“混沌”和缺乏“可积性”,这意味着粒子轨迹不能用一系列积分来预测。 对于可积系统,未来的动力学可以预测。 然而,有趣的是,如果可积性的条件被弱打破,仍然有稳定动力学可以预测的情况。 这是著名的Kolmogorov-Arnold-Moser(KAM)定理的结果,该定理表明小扰动不足以使系统混沌。 这种效应在很大程度上是我们太阳系轨道稳定性的原因。 由于量子物理学也描述动力学,因此很自然地会问是否存在量子系统的KAM定理的类似物。 这个项目将探索这个问题,首先使用一维陷阱中的超冷原子气体创建一个量子可积系统。 系统行为的改变将通过调整原子之间的磁性长程相互作用来引起。 动量反冲后气体热化所需的时间将提供系统中可积性崩溃的度量。 这项工作将对量子信息处理以及其他依赖量子动力学可预测性的技术产生影响。 参与该项目的学生还将受益于研究培训,为他们在高科技行业或学术生涯中的工作做好准备。为了实现这些目标,该团队将把最具磁性的元素镝(Dy)原子限制在二维光学晶格中。 到第一横向运动激发态的能隙将大于气体温度和化学势,确保每个雪茄形管中的气体处于准1D状态。 对于足够大的散射长度,气体将近似实现可积Lieb-Liniger模型的Tonks-Girardeau极限。 磁场将设置偶极子相对于管轴的角度。 磁偶极-偶极相互作用的大小可以通过这个角度来调节,使我们能够控制可积性破坏微扰强度。 布拉格衍射脉冲会将气体一分为二。 由于弱的纵向谐波约束,这些气体部分将每10 ms碰撞一次。 这个量子牛顿摇篮实验的偶极版本将使这个团队能够探索量子领域中经典KAM场景的类似物。 此外,自旋-轨道耦合(先前由这个小组用Dy证明)将被引入,试图在一维费米Dy气体中诱导接近Feshbach共振的p波超流性。 通过这种方式,一维原子系统将被用来探索当原子的自旋取决于原子移动的方向时产生的新型超流体。 这很重要,因为像这样的奇异超流体支持可能对量子信息处理有用的不寻常的激发。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Lev其他文献
Willingness-to-cede behaviour in sustainable supply chain coordination
可持续供应链协调中的让步行为意愿
- DOI:
10.1016/j.ijpe.2021.108207 - 发表时间:
2021-10 - 期刊:
- 影响因子:12
- 作者:
Xiao-xue Zheng;Deng-feng Li;Zhi Liu;Fu Jia;Benjamin Lev - 通讯作者:
Benjamin Lev
Customization or jailbreaking for bloatware: strategic impacts of consumer-initiated behavior of software products
针对冗余软件的定制化或越狱:消费者发起的软件产品行为的战略影响
- DOI:
10.1016/j.eswa.2025.128434 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:7.500
- 作者:
Zhitang Li;Benjamin Lev - 通讯作者:
Benjamin Lev
Optimal buy-online-and-pick-up-in-store strategies in the livestreaming selling context
直播销售情境下的最佳线上购买线下提货策略
- DOI:
10.1016/j.ijpe.2025.109711 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:10.000
- 作者:
Zhengqiang Li;Azmat Ullah;Qingyun Xu;Benjamin Lev - 通讯作者:
Benjamin Lev
Optimal trade-off of integrated river basin water resources allocation considering water market: A bi-level multi-objective model with conditional value-at-risk constraints
考虑水市场的流域水资源综合配置最优权衡:带条件风险价值约束的双层多目标模型
- DOI:
10.1016/j.cie.2022.108160 - 发表时间:
2022-04 - 期刊:
- 影响因子:7.9
- 作者:
Yan Tu;Hongwei Shi;Xiaoyang Zhou;Benjamin Lev - 通讯作者:
Benjamin Lev
Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model
不确定性下银行体系效率评估:多期三阶段DEA模型
- DOI:
10.1016/j.omega.2018.05.012 - 发表时间:
2019-06 - 期刊:
- 影响因子:0
- 作者:
Xiaoyang Zhou;Zhongwen Xu;Jian Chai;Liming Yao;Shouyang Wang;Benjamin Lev - 通讯作者:
Benjamin Lev
Benjamin Lev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Lev', 18)}}的其他基金
Exploring the Properties of Quantum Many-Body Scar States in Dipolar Gases
探索偶极气体中量子多体疤痕态的性质
- 批准号:
2308540 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
Exploring Excited-State 1D Dipolar Quantum Matter with Dysprosium Gases
用镝气体探索激发态一维偶极量子物质
- 批准号:
2006149 - 财政年份:2020
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Computing with Chip-Based Photonics
E2CDA:类型 I:协作研究:基于芯片的光子学的节能计算
- 批准号:
1640075 - 财政年份:2016
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
Synthetic Gauge Fields in Quantum Gases of Dysprosium
镝量子气体中的合成规范场
- 批准号:
1403396 - 财政年份:2014
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
CAREER: Exploring exotic matter through the quantum manipulation of dipolar atoms
职业:通过偶极原子的量子操纵探索奇异物质
- 批准号:
1262062 - 财政年份:2011
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
CAREER: Exploring exotic matter through the quantum manipulation of dipolar atoms
职业:通过偶极原子的量子操纵探索奇异物质
- 批准号:
0847469 - 财政年份:2009
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
相似海外基金
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
- 批准号:
10090632 - 财政年份:2024
- 资助金额:
$ 48.7万 - 项目类别:
Collaborative R&D
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
$ 48.7万 - 项目类别:
Studentship
LIB Sparks - Gases, sparks and flames - a numerical study of lithium-ion battery failure in closed spaces and its mitigation
LIB Sparks - 气体、火花和火焰 - 封闭空间内锂离子电池故障及其缓解的数值研究
- 批准号:
EP/Y027639/1 - 财政年份:2024
- 资助金额:
$ 48.7万 - 项目类别:
Fellowship
PriSciTemp: Primary spectrometric thermometry for gases
PriSciTemp:气体的初级光谱测温
- 批准号:
10074890 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
EU-Funded
BioPro - Low emission protein production from anaerobic digestion gases
BioPro - 通过厌氧消化气体生产低排放蛋白质
- 批准号:
10077731 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Collaborative R&D
Spectroscopic measurements of volcanic gases in volcanic environments
火山环境中火山气体的光谱测量
- 批准号:
2884080 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Studentship
Time-Dependent Hydrodynamics in Uniform Fermi Gases
均匀费米气体中的瞬态流体动力学
- 批准号:
2307107 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Assessing the Contribution of Permafrost-derived Trace Gases in Greenhouse Warming since the Last Glacial Maximum
博士后奖学金:OPP-PRF:评估自末次盛冰期以来永久冻土衍生的微量气体对温室变暖的贡献
- 批准号:
2317931 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Standard Grant
Study on the characteristics of trace gases in the Venusian atmosphere using satellite solar occultation measurements and ground-based high-resolution spectroscopy
利用卫星掩星测量和地面高分辨率光谱研究金星大气中痕量气体的特征
- 批准号:
23K03480 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
- 批准号:
23H01883 - 财政年份:2023
- 资助金额:
$ 48.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)