Antiferromagnetic spinor Bose-Einstein condensates: from quantum quenches to quantum information
反铁磁自旋玻色-爱因斯坦凝聚:从量子淬灭到量子信息
基本信息
- 批准号:1707654
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This experimental research program uses ultracold matter to study how instabilities develop and propagate in the microscopic realm, rather than the macroscopic one. In the microscopic domain, most objects obey the laws of quantum physics, not classical physics. The difference between these two sets of laws is what can lend tremendous power to quantum technologies, ranging from quantum computers that promise unparalleled computational speed, to new quantum mechanical sensors that herald improved measurement technologies. Today there is an increased need for understanding the science that enables such quantum machinery, and to discover the physical laws and limitations relevant to the quantum world. This team will use an ultracold atomic gas to advance such scientific understanding. By cooling gases very close to absolute zero, this team will realize a nearly pure quantum system known as a Bose-Einstein condensate (BEC), with which they can explore the limits to pure quantum behavior. One aim of this project is to control the magnetic properties of a BEC using magnetic fields to generate artificial instabilities and to use these instabilities to learn how a quantum system heats up and loses its pure quantum nature, and how one might be able to control that process. In addition to advancing the science that underlies tomorrow's technologies, this team is also training a diverse community of students and future educators, some of whom will become the builders and architects of these future technologies. A focused set of experiments on sodium spinor Bose-Einstein condensates (BECs) is proposed that probes the multi-mode nature of a quantum quench. The experiments emphasize the group's unique experimental capabilities and are motivated by intriguing questions that have emerged from earlier funded work. The probability distribution of spin mF = +1 and -1 atoms generated by the quench will be measured, looking for super-Poissonian fluctuations in a multi-mode scenario. In a second project, the equilibrium physics of a spinor BEC exactly at zero quadratic Zeeman shift will be explored. Finally, non-destructive imaging of the spin will be implemented to study the effect of continuous quantum measurement on a spinor BEC. A combination of destructive and non-destructive experimental imaging techniques will be honed and deployed to reveal new and richly detailed information about the system under study. The proposed research will have broad scientific impact, particularly in condensed matter and quantum optics, and through outreach efforts, to the broader Atlanta community. Scientific collaborations with condensed matter and quantum optics colleagues, initiated in the previous funding cycle, will be strengthened. Graduate student teaching and training will continue to be emphasized, as will exposure of undergraduates to research. HD videoconferencing to local area classrooms, participation in summer workshops for high school teachers and other, related outreach activities will be important components of the broader impact of this program.
这项实验研究计划使用超冷物质来研究不稳定性如何在微观领域而不是宏观领域发展和传播。 在微观领域,大多数物体遵循量子物理定律,而不是经典物理定律。 这两套定律之间的差异可以为量子技术提供巨大的力量,从承诺无与伦比的计算速度的量子计算机到预示着改进测量技术的新量子力学传感器。 如今,人们越来越需要了解实现这种量子机械的科学,并发现与量子世界相关的物理定律和限制。 该团队将使用超冷原子气体来推进这种科学理解。 通过将气体冷却到非常接近绝对零度,该团队将实现一个被称为玻色-爱因斯坦凝聚体(BEC)的近乎纯量子系统,他们可以利用该系统探索纯量子行为的极限。 该项目的一个目的是利用磁场来控制BEC的磁性,以产生人为的不稳定性,并利用这些不稳定性来了解量子系统如何升温并失去其纯粹的量子性质,以及如何能够控制这一过程。 除了推进未来技术的科学基础之外,该团队还培训了一个由学生和未来教育工作者组成的多元化社区,其中一些人将成为这些未来技术的建设者和架构师。 提出了一组关于钠旋量玻色-爱因斯坦凝聚(BEC)的实验,以探讨量子猝灭的多模性质。这些实验强调了该小组独特的实验能力,并受到早期资助工作中出现的有趣问题的激励。将测量由猝灭产生的自旋mF = +1和-1原子的概率分布,寻找多模场景中的超泊松波动。在第二个项目中,旋量BEC的平衡物理正好在零平方塞曼位移将进行探讨。最后,将对自旋进行无损成像,以研究连续量子测量对旋量BEC的影响。破坏性和非破坏性实验成像技术的组合将被磨练和部署,以揭示有关正在研究的系统的新的和丰富的详细信息。 拟议的研究将产生广泛的科学影响,特别是在凝聚态和量子光学领域,并通过推广工作,扩大到更广泛的亚特兰大社区。与凝聚态和量子光学同事的科学合作,在上一个资助周期开始,将得到加强。研究生的教学和培训将继续受到重视,本科生接触研究也将继续受到重视。向当地教室提供高清视频会议、参加高中教师暑期讲习班和其他相关外联活动将是该方案产生更广泛影响的重要组成部分。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust characterization of microfabricated atomic beams on a six-month time scale
- DOI:10.1103/physrevresearch.2.023239
- 发表时间:2020-05-29
- 期刊:
- 影响因子:4.2
- 作者:Li, Chao;Wei, Bochao;Raman, C.
- 通讯作者:Raman, C.
Magnetic Solitons in a Spin-1 Bose-Einstein Condensate
- DOI:10.1103/physrevlett.125.030402
- 发表时间:2020-07-15
- 期刊:
- 影响因子:8.6
- 作者:Chai, X.;Lao, D.;Raman, C.
- 通讯作者:Raman, C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chandra Raman其他文献
Dynamics of rotating Bose-Einstein condensates probed by Bragg scattering
通过布拉格散射探测旋转玻色-爱因斯坦凝聚体的动力学
- DOI:
10.1016/j.matcom.2006.10.029 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
S. R. Muniz;Devang Naik;M. Bhattacharya;Chandra Raman - 通讯作者:
Chandra Raman
Continuous vortex pumping into a spinor condensate with magnetic fields
用磁场连续涡流泵入旋量凝聚体
- DOI:
10.1103/physreva.78.043606 - 发表时间:
2008 - 期刊:
- 影响因子:2.9
- 作者:
Zhi;P. Zhang;Chandra Raman;Li You;Li You - 通讯作者:
Li You
Chandra Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chandra Raman', 18)}}的其他基金
Nematic and Magnetic Behavior of Spin-1 Bose-Einstein Condensates
Spin-1 玻色-爱因斯坦凝聚体的向列和磁性行为
- 批准号:
2011478 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
QLCI-CG: Atomic, Molecular, and Photonic Instruments on Chip for Quantum Sensing
QLCI-CG:用于量子传感的原子、分子和光子片上仪器
- 批准号:
1936699 - 财政年份:2019
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Antiferromagnetic Spinor Bose-Einstein Condensates
反铁磁旋量玻色-爱因斯坦凝聚
- 批准号:
1100179 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Microscopic Manipulation of Bose-Einstein condensates
玻色-爱因斯坦凝聚态的显微操控
- 批准号:
0555554 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
Siegel 模函数的中心点处取值问题的研究
- 批准号:11501324
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
主丛联络与旋量分析
- 批准号:11171246
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
相似海外基金
Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
- 批准号:
2207777 - 财政年份:2022
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Controlled Creation and Dynamics of non-Abelian Vortices and Topological Processes in spinor Bose-Einstein condensates
旋量玻色-爱因斯坦凝聚中非阿贝尔涡旋和拓扑过程的受控产生和动力学
- 批准号:
EP/V03832X/1 - 财政年份:2021
- 资助金额:
$ 45万 - 项目类别:
Research Grant
Topological and Many-body Localization Phases in Spinor Bose-Hubbard Models
旋量 Bose-Hubbard 模型中的拓扑和多体定位相
- 批准号:
20J20715 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
RUI: Topological Excitations in Spinor Bose-Einstein Condensates
RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发
- 批准号:
1806318 - 财政年份:2018
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates
旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应
- 批准号:
EP/L00609X/2 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates
旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应
- 批准号:
EP/L00609X/1 - 财政年份:2014
- 资助金额:
$ 45万 - 项目类别:
Fellowship
Antiferromagnetic Spinor Bose-Einstein Condensates
反铁磁旋量玻色-爱因斯坦凝聚
- 批准号:
1100179 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
Magnetic properties of a spinor dipolar Bose-Einstein condensate
旋量偶极玻色-爱因斯坦凝聚体的磁特性
- 批准号:
22740265 - 财政年份:2010
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Spinor Bose-Einstein Condensates in Optical Traps
光学陷阱中的旋量玻色-爱因斯坦凝聚
- 批准号:
0605049 - 财政年份:2006
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant