Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates

旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应

基本信息

  • 批准号:
    EP/L00609X/2
  • 负责人:
  • 金额:
    $ 2.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Topological defects are important objects in several different areas of physics. They appear as vortices in superfluid liquid helium, in superconductors and in liquid crystals. They appear in elementary-particle physics as strings and monopoles. In theories of the early universe, cosmic strings that end on domain walls between regions of different vacua are predicted to arise as the universe cools.In the last decade it has become possible to create Bose-Einstein condensates where the atoms retain their quantum-mechanical spin. This leads to a wider range of topological defects, where structures formed by the spins of the atoms play a crucial role. In particular, the topological defects in such spinor Bose-Einstein condensates have important mathematical analogies with cosmic strings and other topological defects in cosmology and elementary-particle physics. Our research will use extensive computer simulations to investigate how recent experimental advances can be employed to study the physics of so-called topological defects in Bose-Einstein condensates, which are highly controllable and observable with today's experimental technology. Our considerations carry over to a novel type of quantum gas that has recently been created in experiments: Bose-Einstein condensates of short-lived light-matter hybrid particles.The structure and stability of the defects are influenced by the magnitude of the atomic spin as well as by the nature of the atomic interactions and externally imposed fields. It is possible to create condensates of atoms that carry more than one unit of spin. This results in a drastically enlarged range of possible defect configurations - including highly intriguing non-Abelian vortices - whose structure and stability we will determine, in order to predict experimentally observable states. When long-range interactions are taken into account, the effects may be pronounced already in atoms with one unit of spin. Artificially created gauge-fields that couple spin and spatial motion have the potential to stabilise and make observable otherwise unstable structures. Our research will use and expand the classic Gross-Pitaevskii model to account for these effects and predict experimentally observable states.Placing the spinor condensate, for example, in an optical lattice created with laser beams enhances the role of quantum fluctuations, such that quantum-mechanical effects can become observable on a macroscopic scale. In this research we will develop theory for describing the spinor condensate in this strongly fluctuating regime and describe observable quantum effects, such as dynamical instabilities of vortices.A similar theoretical development can be used to describe the condensation transition in gases of exciton-polaritons, which are short-lived light-matter hybrid "quasiparticles" that exist in semiconductor structure sandwiched between mirrors. The short lifetime means that the gas must be constantly replenished, and the condensate exists in a dynamic balance between pumping and decay, rather than in thermal equilibrium. The polarisation of the photon component leads to an effective spin of 1/2. We will collaborate closely with experiment to predict spin structures and topological defects arising in the pumping dynamics in novel experiments specifically designed to study the condensation process.Our research will highlight how quantum gases provide novel media for the stability properties of field-theoretical defects and textures, with the intriguing prospect of studying analogues of cosmological phenomena in the laboratory.The research will be conducted at the University of Southampton, host to considerable expertise in quantum gases, and to leading experimental and theoretical research in exciton-polariton condensates. Close collaboration with experiment forms an integral part of the research. The research will make extensive use of the IRIDIS supercomputing facillity.
拓扑缺陷是物理学中几个不同领域的重要研究对象。它们在超流液氦、超导体和液晶中以涡旋的形式出现。它们在基本粒子物理学中以弦和单极子的形式出现。在早期宇宙的理论中,宇宙弦终止于不同真空区域之间的畴壁,被预言会在宇宙冷却时出现。在过去的十年里,已经有可能创造出玻色-爱因斯坦凝聚体,其中原子保持量子力学自旋。这导致了更广泛的拓扑缺陷,其中由原子自旋形成的结构起着至关重要的作用。特别是,这种旋量玻色-爱因斯坦凝聚中的拓扑缺陷与宇宙学和基本粒子物理学中的宇宙弦和其他拓扑缺陷有重要的数学类比。我们的研究将使用广泛的计算机模拟来研究如何利用最新的实验进展来研究玻色-爱因斯坦凝聚体中所谓的拓扑缺陷的物理学,这些缺陷具有高度的可控性和可观察性。我们的考虑延续到最近在实验中产生的一种新型量子气体:短寿命光-物质混合粒子的玻色-爱因斯坦凝聚体。缺陷的结构和稳定性受到原子自旋大小以及原子相互作用和外部施加场的性质的影响。有可能制造出携带一个以上自旋单位的原子凝聚体。这导致可能的缺陷配置的范围急剧扩大-包括非常有趣的非阿贝尔涡旋-我们将确定其结构和稳定性,以预测实验可观察到的状态。当考虑到长程相互作用时,这种效应可能在具有一个自旋单位的原子中已经很明显了。通过牺牲产生的规范场将自旋和空间运动耦合起来,有可能稳定并形成可观察到的不稳定结构。我们的研究将使用并扩展经典的Gross-Pitaevskii模型来解释这些效应,并预测实验上可观察到的状态。例如,将旋量凝聚体放置在用激光束创建的光学晶格中,增强了量子涨落的作用,这样量子力学效应就可以在宏观尺度上观察到。在这项研究中,我们将发展描述旋量凝聚体在这种强涨落状态下的理论,并描述可观察到的量子效应,如涡旋的动力学不稳定性。类似的理论发展可以用来描述激子-极化激元气体中的凝聚转变,激子-极化激元是存在于夹在镜子之间的半导体结构中的短寿命光-物质混合“准粒子”。短寿命意味着气体必须不断补充,冷凝物存在于泵送和衰变之间的动态平衡中,而不是热平衡中。光子分量的极化导致有效自旋为1/2。我们将与实验密切合作,在专门研究凝聚过程的新实验中预测泵浦动力学中出现的自旋结构和拓扑缺陷。我们的研究将突出量子气体如何为场论缺陷和纹理的稳定性提供新的介质,在实验室里研究类似宇宙现象的有趣前景。这项研究将在南安普顿大学进行,在量子气体方面拥有相当多的专业知识,并在激子极化激元凝聚体方面进行了领先的实验和理论研究。与实验的密切合作是研究的一个组成部分。这项研究将广泛使用IRIDIS超级计算设备。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Internal structure and stability of vortices in a dipolar spinor Bose-Einstein condensate
偶极旋量玻色-爱因斯坦凝聚中涡旋的内部结构和稳定性
  • DOI:
    10.1103/physreva.95.053601
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Borgh M
  • 通讯作者:
    Borgh M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Magnus Borgh其他文献

Magnus Borgh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Magnus Borgh', 18)}}的其他基金

Controlled Creation and Dynamics of non-Abelian Vortices and Topological Processes in spinor Bose-Einstein condensates
旋量玻色-爱因斯坦凝聚中非阿贝尔涡旋和拓扑过程的受控产生和动力学
  • 批准号:
    EP/V03832X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Research Grant
Topological Defect Structures and Quantum Effects in Spinor Bose-Einstein Condensates
旋量玻色-爱因斯坦凝聚中的拓扑缺陷结构和量子效应
  • 批准号:
    EP/L00609X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Fellowship

相似海外基金

CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Continuing Grant
Additive Manufacturing - Structures on Demand - Managing microstructure and defect populations in Engineering Alloys
增材制造 - 按需结构 - 管理工程合金中的微观结构和缺陷群
  • 批准号:
    2575881
  • 财政年份:
    2021
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Studentship
High-mobility Semiconductor Devices due to Control of Phonon Field caused by Defect-free Nano-periodic Structures
通过无缺陷纳米周期结构控制声子场实现高迁移率半导体器件
  • 批准号:
    20H05649
  • 财政年份:
    2020
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    1945380
  • 财政年份:
    2020
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Continuing Grant
Ultra-Multiple-Point Laser Scanning 3D Ultrasonic Imaging Method for Challenging to Improve Reliability of Actual Structures and Elucidate Defect Generation Mechanisms
超多点激光扫描3D超声成像方法挑战提高实际结构的可靠性并阐明缺陷产生机制
  • 批准号:
    19K21910
  • 财政年份:
    2019
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Automatic Defect Detection in Structures
结构中的自动缺陷检测
  • 批准号:
    19J12391
  • 财政年份:
    2019
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Nano-defect super-resolution measurement of next-generation micro-functional structures using localized optical fields with dynamic phase control
使用具有动态相位控制的局部光场对下一代微功能结构进行纳米缺陷超分辨率测量
  • 批准号:
    19H02036
  • 财政年份:
    2019
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Advanced Continuous Tow Shearing in 3D (ACTS3D): Advanced fibre placement technology for manufacturing defect-free complex 3D composite structures
先进的 3D 连续丝束剪切 (ACTS3D):先进的纤维铺放技术,用于制造无缺陷的复杂 3D 复合材料结构
  • 批准号:
    EP/R023247/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Research Grant
Localized electronic states of defect structures in graphene
石墨烯缺陷结构的局域电子态
  • 批准号:
    17K04971
  • 财政年份:
    2017
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Microstructure- and defect-controlled damage tolerance evaluation of lattice structures at room temperature and 650 °C based on the E-PBF processed Ni-based alloy Inconel 718
基于 E-PBF 处理的镍基合金 Inconel 718 进行室温和 650 °C 晶格结构的微观结构和缺陷控制损伤容限评估
  • 批准号:
    379213719
  • 财政年份:
    2017
  • 资助金额:
    $ 2.88万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了