Improving Data Quality of Advanced LIGO Gravitational-Wave Searches
提高先进 LIGO 引力波搜索的数据质量
基本信息
- 批准号:1707668
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award focuses on a specific task which is mission critical for the success of gravitational-wave astrophysics in the next few years: the improvement of data quality collected by the LIGO Interferometer Gravitational-wave Observatory (LIGO) detectors in future observing runs. Research will focus on (1) using existing techniques to identify and remove non-astrophysical noise in the data stream, and (2) developing new methods to build predictive models for detector noise. Broader impacts on the development of gravitational-wave astrophysics will consist in improving LIGO's search pipelines and the performance of the detectors. Educational and public outreach initiatives will strengthen programs aimed at yielding knowledgeable teachers with enough physics content to effectively teach physics courses in school. New initiatives to promote science among diverse segments of the population will be developed through collaborations with educators in other disciplines.Removing non-astrophysical artifacts from gravitational-wave data is crucial for reducing instrumental noise non-stationarity, extending the detector network duty cycle, and increasing the statistical significance of gravitational-wave candidate events. Improvements in these areas, in turn, boost parameter estimation of the gravitational-wave detections and enable refined astrophysical interpretations of the signals. Personnel funded under this award will analyze data from LIGO detector output and auxiliary sensors with the goal to isolate and identify sources of noise affecting LIGO's gravitational-wave searches. Results from these investigations will be fed back to LIGO Laboratory commissioners and instrumentation researchers to assist in the mitigation of instrumental and environmental disturbances. At the same time, Mississippi students and researchers will develop new, fast, reliable and accurate methods to model instrumental noise in interferometric gravitational-wave detectors. Machine learning-based algorithms, such as genetic programming, will be used to build predictive models to uncover the origin of non-astrophysical noise in the detectors.
该奖项的重点是一个特定的任务,这是使命的引力波天体物理学在未来几年的成功关键:提高数据质量收集的LIGO干涉仪引力波天文台(LIGO)探测器在未来的观测运行。研究将集中在(1)使用现有技术来识别和消除数据流中的非天体物理噪声,以及(2)开发新方法来建立探测器噪声的预测模型。对引力波天体物理学发展的更广泛影响将包括改进LIGO的搜索管道和探测器的性能。教育和公共宣传计划将加强旨在培养知识渊博的教师的计划,这些教师有足够的物理内容,可以有效地在学校教授物理课程。将通过与其他学科的教育工作者合作,制定新的举措,以促进人口的不同部分之间的科学。从引力波数据中去除非天体物理的伪影是至关重要的,以减少仪器噪声的非平稳性,延长探测器网络的占空比,并增加引力波候选事件的统计意义。这些领域的改进反过来又会提高引力波探测的参数估计,并使信号的天体物理解释更加精确。该项目资助的人员将分析来自LIGO探测器输出和辅助传感器的数据,以隔离和识别影响LIGO引力波搜索的噪声源。这些调查的结果将反馈给LIGO实验室专员和仪器研究人员,以帮助减轻仪器和环境干扰。与此同时,密西西比的学生和研究人员将开发新的,快速,可靠和准确的方法来模拟干涉引力波探测器的仪器噪声。基于机器学习的算法,如遗传编程,将用于建立预测模型,以揭示探测器中非天体物理噪声的来源。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strategy for signal classification to improve data quality for Advanced Detectors gravitational-wave searches
信号分类策略以提高高级探测器引力波搜索的数据质量
- DOI:10.1393/ncc/i2017-17124-4
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Elena Cuoco
- 通讯作者:Elena Cuoco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Cavaglia其他文献
Marco Cavaglia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Cavaglia', 18)}}的其他基金
WoU-MMA: Enabling Multi-Messenger Astrophysics with Advanced LIGO: from Detector Characterization to Interpretation of Gravitational-Wave Signals
WoU-MMA:利用先进的 LIGO 实现多信使天体物理学:从探测器表征到引力波信号的解释
- 批准号:
2308693 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
WoU-MMA: Enabling Multi-Messenger Astrophysics with Advanced LIGO: from Detector Calibration to Interpretation of Gravitational-Wave SIgnals
WoU-MMA:利用先进的 LIGO 实现多信使天体物理学:从探测器校准到引力波信号的解释
- 批准号:
2011334 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Improving Data Quality of Advanced LIGO Gravitational-Wave Searches
提高先进 LIGO 引力波搜索的数据质量
- 批准号:
1921006 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mississippi's Contribution to Advanced LIGO's Search for Gravitational Waves
密西西比州对先进 LIGO 引力波搜索的贡献
- 批准号:
1404139 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mississippi Participation in LIGO's Search for Gravitational Waves: Getting Ready for Advanced LIGO
密西西比州参与 LIGO 搜索引力波:为高级 LIGO 做好准备
- 批准号:
1067985 - 财政年份:2011
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Catching a New Wave: Gravitational-wave Astronomy as a Probe of the Universe
捕捉新浪潮:引力波天文学作为宇宙的探测器
- 批准号:
0852870 - 财政年份:2009
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Mississippi participation in LIGO's search for gravitational waves
密西西比州参与 LIGO 搜寻引力波
- 批准号:
0757937 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving Users' Access to Quality Data
改善用户对高质量数据的访问
- 批准号:
RGPIN-2021-04120 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Improving health data quality by assessing and enhancing semantic integrity
通过评估和增强语义完整性来提高健康数据质量
- 批准号:
10446586 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Improving health data quality by assessing and enhancing semantic integrity
通过评估和增强语义完整性来提高健康数据质量
- 批准号:
10651693 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
QUAREP-LiMi. Development of quality control tools and methodologies for light microscopy: improving image data quality, reliability & reproducibility.
QUAREP-LiMi。
- 批准号:
MR/W020793/1 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Research Grant
EAGER: Improving the Data Quality of Measurements Collected with Drone-Mounted Sensors: A Fluid Dynamics Perspective with Guidelines for Optimum Sensor Placement and Housing
EAGER:提高无人机安装传感器收集的测量数据质量:流体动力学视角以及最佳传感器放置和外壳指南
- 批准号:
2125997 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Improving Users' Access to Quality Data
改善用户对高质量数据的访问
- 批准号:
RGPIN-2021-04120 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Improving Users' Access to Quality Data
改善用户对高质量数据的访问
- 批准号:
DGECR-2021-00447 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Launch Supplement
Analytical tools to utilize livestock big data for improving meat quality
利用牲畜大数据改善肉类质量的分析工具
- 批准号:
20K06383 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Improving the Quality and Reducing the Burden of Producing and Reusing Publicly Accessible Research Data
EAGER:提高可公开访问的研究数据的质量并减轻其负担
- 批准号:
2039677 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Improving Data Quality in Protected and Dynamic Data Environments
提高受保护的动态数据环境中的数据质量
- 批准号:
435477-2013 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual