GOALI: Visualizing and Measuring Nanoscale Properties through Multi-spectral Atomic Force Microscopy for the Design and Discovery of Novel Materials
GOALI:通过多光谱原子力显微镜可视化和测量纳米级特性,用于新型材料的设计和发现
基本信息
- 批准号:1726274
- 负责人:
- 金额:$ 54.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Great advances in scientific discovery and human progress have often followed the development of new scientific tools that allow us to "see" well beyond our everyday experience. The Atomic Force Microscope (AFM) is one such tool that has revolutionized materials science by its ability to visualize a wide variety of materials under different conditions with the resolution of an atom. In the past, AFM has been used to render contrast at one frequency but these days it is possible to observe multi-spectral contrast in images at many different frequencies: in effect like an optical microscope being able to observe contrast through different filters. This research project will allow Purdue University researchers to work closely with an industrial partner, Oxford Instruments-Asylum. The team will innovate methods to convert this multi-spectral contrast to quantitative physical properties to help in the design and discovery of next-generation materials for biomedical, energy storage, and consumer products. A comprehensive theoretical and experimental research and outreach program is planned to significantly advance the state-of-the art of multi-frequency AFM through a collaboration between Purdue University, Oxford Instruments-Asylum, a leader in the multi-frequency AFM market, and KTH, Sweden. The project also involves development of new courses in polymer interactions and multi-frequency AFM for students and enhancement of Virtual Environment for Dynamic AFM capability for multi-frequency AFM operation for polymers which will greatly benefit students and other researchers. The most important multi-frequency Atomic Force Microscopy modes today can be conceptually understood as nonlinear systems with slow and fast timescale dynamics. This project will undertake analytical perturbative, continuation, and experimental approaches to analyze these problems to yield a rich harvest of predictive insight into microcantilever motions, stability, bifurcations, and chaos. On one hand, this information will help operate multi-frequency AFM's in stable regimes, while on the other hand, the insight will help guide the operating conditions most appropriate to generate contrast on a specific material. Additionally, sophisticated computational tools and experimental validation will allow an unprecedented correlation between experimental observables in multi-frequency Atomic Force Microscopy and the local properties of soft polymeric materials used in electronics, biomedical devices, and consumer products. These tools will be made available to hundreds of researchers worldwide through the software suite Virtual Environment for Dynamic Atomic Force Microscopy on the cyber-infrastructure of nano-HUB. The work is a comprehensive study of the dynamical foundations of multi-frequency AFM, a next emerging frontier in the evolution of Atomic Force Microscope towards a truly functional, quantitative nanoscale imaging technology. The findings will be transferred to industry through the close collaboration with Oxford Instruments (Asylum). While the focus of the project is on multifrequency Atomic Force Microscopy, there is a clear trend towards multiple frequency methods across many imaging technologies; for example, in contrast enhanced ultrasound, electrical impedance tomography, and microwave imaging to name a few. Thus the approaches developed in this work could not only spill over to multi-frequency imaging methods in other biomedical or materials instrumentation but could also create opportunities for multi-spectral monitoring in micro- and nano-electromechanical systems.
科学发现和人类进步的巨大进步往往伴随着新的科学工具的发展,这些工具使我们能够“看到”远远超出我们日常经验的东西。原子力显微镜(AFM)就是这样一种工具,它能够在不同条件下以原子的分辨率可视化各种材料,从而彻底改变了材料科学。在过去,原子力显微镜一直被用于在一个频率下呈现对比度,但现在可以在许多不同频率下观察图像中的多光谱对比度:实际上就像光学显微镜能够通过不同的滤波器观察对比度一样。该研究项目将使普渡大学的研究人员与工业合作伙伴牛津仪器庇护密切合作。 该团队将创新方法,将这种多光谱对比度转换为定量物理特性,以帮助设计和发现用于生物医学、储能和消费产品的下一代材料。一个全面的理论和实验研究和推广计划,计划通过普渡大学,牛津仪器庇护,在多频AFM市场的领导者,和KTH,瑞典之间的合作,显着推进国家的最先进的多频AFM。该项目还涉及为学生开发聚合物相互作用和多频AFM的新课程,并增强动态AFM虚拟环境的多频AFM聚合物操作能力,这将使学生和其他研究人员受益匪浅。当今最重要的多频原子力显微镜模式可以从概念上理解为具有慢和快时标动态的非线性系统。该项目将进行分析微扰,连续和实验方法来分析这些问题,以产生丰富的收获预测洞察微悬臂梁运动,稳定性,分叉和混沌。一方面,这些信息将有助于在稳定的状态下操作多频AFM,而另一方面,这些信息将有助于指导最适合在特定材料上产生对比度的操作条件。此外,复杂的计算工具和实验验证将允许多频原子力显微镜中的实验观测值与电子,生物医学设备和消费品中使用的软聚合物材料的局部特性之间的前所未有的相关性。这些工具将通过nano-HUB网络基础设施上的动态原子力显微镜虚拟环境软件套件提供给全球数百名研究人员。这项工作是对多频AFM动力学基础的全面研究,这是原子力显微镜向真正功能性,定量纳米级成像技术发展的下一个新兴前沿。研究结果将通过与牛津仪器(庇护)的密切合作转移到行业。虽然该项目的重点是多频原子力显微镜,但在许多成像技术中有明显的多频方法趋势;例如,在对比增强超声,电阻抗断层扫描和微波成像中。因此,在这项工作中开发的方法不仅可以溢出到其他生物医学或材料仪器中的多频成像方法,而且还可以为微机电系统和纳米机电系统中的多光谱监测创造机会。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy
- DOI:10.1039/d1nr03437e
- 发表时间:2021-08-30
- 期刊:
- 影响因子:6.7
- 作者:Rajabifar, Bahram;Bajaj, Anil;Raman, Arvind
- 通讯作者:Raman, Arvind
A fast first-principles approach to model atomic force microscopy on soft, adhesive, and viscoelastic surfaces
- DOI:10.1088/2053-1591/ac1fb7
- 发表时间:2021-09-01
- 期刊:
- 影响因子:2.3
- 作者:Rajabifar, Bahram;Wagner, Ryan;Raman, Arvind
- 通讯作者:Raman, Arvind
Nanomechanical mapping in air or vacuum using multi-harmonic signals in tapping mode atomic force microscopy
- DOI:10.1088/1361-6528/ab9390
- 发表时间:2020-11-06
- 期刊:
- 影响因子:3.5
- 作者:Huda Shaik, Nurul;Reifenberger, Ronald G.;Raman, Arvind
- 通讯作者:Raman, Arvind
Machine Learning Approach to Characterize the Adhesive and Mechanical Properties of Soft Polymers Using PeakForce Tapping AFM
使用 PeakForce Tape AFM 表征软聚合物的粘合和机械性能的机器学习方法
- DOI:10.1021/acs.macromol.2c00147
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:Rajabifar, Bahram;Meyers, Gregory F.;Wagner, Ryan;Raman, Arvind
- 通讯作者:Raman, Arvind
Dynamic AFM on Viscoelastic Polymer Samples with Surface Forces
- DOI:10.1021/acs.macromol.8b01485
- 发表时间:2018-12-11
- 期刊:
- 影响因子:5.5
- 作者:Rajabifar, Bahram;Jadhav, Yoti M.;Raman, Arvind
- 通讯作者:Raman, Arvind
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arvind Raman其他文献
Maximising the potential of academic–practitioner collaborations in international development
最大限度地发挥学术与实践者在国际发展中合作的潜力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
Priyanka Brunese;Min K. Lee;Ann Bessenbacher;Arvind Raman;Yuehwern Yih - 通讯作者:
Yuehwern Yih
Nonlinear Dynamics of a Flexible Spinning Disc Coupled to a Precompressed Spring
- DOI:
10.1007/s11071-005-5183-8 - 发表时间:
2005-04-01 - 期刊:
- 影响因子:6.000
- 作者:
Anirban Jana;Arvind Raman - 通讯作者:
Arvind Raman
非線形フォトニック結晶とシリコン・有機ハイブリッド光変調デバイス
非线性光子晶体及硅/有机混合光调制器件
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Daniel Kiracofe;Kei Kobayashi;Aleksander Labuda;Arvind Raman;Hirofumi Yamada;井上 振一郎 - 通讯作者:
井上 振一郎
Anisotropic Mechanical Properties of Living Cells Revealed by Integrated Spinning Disk Confocal and Atomic Force Microscopy
- DOI:
10.1016/j.bpj.2017.11.2803 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Yuri M. Efremov;Mirian Velay-Lizancos;Daniel M. Suter;Pablo D. Zavattieri;Arvind Raman - 通讯作者:
Arvind Raman
Arvind Raman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arvind Raman', 18)}}的其他基金
SNM: Large Scale Manufacturing of Low-Cost Functionalized Carbon Nanomaterials for Energy Storage and Biosensor Applications
SNM:大规模制造用于储能和生物传感器应用的低成本功能化碳纳米材料
- 批准号:
1344654 - 财政年份:2013
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Nonlinear Dynamics and Bifurcations of Human Posture on Tunable Balance Boards
可调谐平衡板上人体姿势的非线性动力学和分叉
- 批准号:
1300632 - 财政年份:2013
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Colombia-U.S. Workshop on Nanotechnology in Energy and Medical Applications
哥伦比亚-美国
- 批准号:
1157747 - 财政年份:2012
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Materials World Network: Probing in-Vitro Structure-Property-Function Relationships of Ciruses at High-Resolution using Advanced Atomic Force Microscopy Methods
材料世界网络:使用先进原子力显微镜方法以高分辨率探测 Ciruses 的体外结构-性质-功能关系
- 批准号:
1008189 - 财政年份:2010
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
GOALI: Nonlinear, Multi-modal, and Stochastic Dynamics of Low-stiffness Microcantilevers in Liquid Environment Atomic Force Microscopy
目标:液体环境原子力显微镜中低刚度微悬臂梁的非线性、多模态和随机动力学
- 批准号:
0927648 - 财政年份:2009
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Nonlinear Dynamics of Microcantilevers Interacting with Nanostructures: New Paradigms for Ultrasensitive Atomic Force Microscopy
微悬臂梁与纳米结构相互作用的非线性动力学:超灵敏原子力显微镜的新范例
- 批准号:
0700289 - 财政年份:2007
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Nonlinear dynamics of microcantilevers interacting with nanostructures - applications to biomolecular sensing and nanotribology
微悬臂梁与纳米结构相互作用的非线性动力学 - 在生物分子传感和纳米摩擦学中的应用
- 批准号:
0409660 - 财政年份:2004
- 资助金额:
$ 54.24万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Mechanics and Aeroelastic Stability of High-Speed Rotating Disks and Translating Webs
职业:高速旋转盘和平移腹板的非线性力学和气动弹性稳定性
- 批准号:
0134455 - 财政年份:2002
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
Vibrations and Nonlinear Dynamics of Microcantilevers Interacting with Nanoscale Structures: Applications to Atomic Force Microscopy
与纳米级结构相互作用的微悬臂梁的振动和非线性动力学:在原子力显微镜中的应用
- 批准号:
0116414 - 财政年份:2001
- 资助金额:
$ 54.24万 - 项目类别:
Standard Grant
相似海外基金
Visualizing Novel Electronic Orders in Bilayer Graphene Systems
可视化双层石墨烯系统中的新型电子顺序
- 批准号:
2312311 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Continuing Grant
Visualizing Janowska: Creating a Digital Architectural Model of a Nazi Concentration Camp
可视化 Janowska:创建纳粹集中营的数字建筑模型
- 批准号:
AH/X00774X/1 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Fellowship
Development of 320x256 pixel metamaterial infrared image sensors for visualizing invisible gases
开发用于可视化不可见气体的 320x256 像素超材料红外图像传感器
- 批准号:
23H01883 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Ligand-tethered Cu-responsive protein labeling chemical tool for visualizing Cu-release at synaptic cleft
开发配体束缚的铜响应蛋白标记化学工具,用于可视化突触间隙铜的释放
- 批准号:
22KJ1889 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Visualizing Photon Induced Dynamics in Polyatomic Molecules using Femtosecond Pump-Probe Laser Pulses
使用飞秒泵浦探测激光脉冲可视化多原子分子中的光子诱发动力学
- 批准号:
2306982 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Continuing Grant
Visualizing gender stereotypes surrounding female doctors and critical review of support for female doctors
围绕女医生的性别刻板印象的可视化以及对女医生支持的严格审查
- 批准号:
23K11681 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of CMOS image sensor for visualizing wavelength information and application in the biotechnology field
波长信息可视化CMOS图像传感器的开发及其在生物技术领域的应用
- 批准号:
23KJ1144 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of a gamma-ray Compton camera for visualizing dose distribution during proton therapy
研究用于可视化质子治疗期间剂量分布的伽马射线康普顿相机
- 批准号:
23H03767 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Label-free volumetric microscopy for visualizing intracellular motility of tumor cell culture
用于可视化肿瘤细胞培养物细胞内运动的无标记体积显微镜
- 批准号:
22KF0058 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Visualizing light elements by attosecond X-ray scattering
通过阿秒 X 射线散射可视化轻元素
- 批准号:
22KK0233 - 财政年份:2023
- 资助金额:
$ 54.24万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))