RUI: Algebraic, Differential-Geometric, and Computational Aspects of Darboux Transformations in Classical and Super Settings

RUI:经典和超级设置中达布变换的代数、微分几何和计算方面

基本信息

  • 批准号:
    1708033
  • 负责人:
  • 金额:
    $ 11.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

Mathematical symmetries are transformations of objects or structures that leave unchanged some characteristics under study. Knowledge of symmetries, used throughout the physical and engineering sciences, can aid understanding of a complicated object by replacing it with a simpler one or can help to isolate quantities that are preserved in physical processes, such as energy or momentum. This research project is aimed at developing the theory of a particular class of symmetry transformations that act on differential equations, which are ubiquitous in models of natural systems. The project aims to develop a new perspective on these Darboux transformations, combining a previously-developed algebraic approach with a geometric viewpoint. This will be done, in particular, in the "super" setting; this refers to the mathematical apparatus relevant for supersymmetry, a theoretical notion introduced in connection with study of elementary particles. The investigator will study algebraic aspects of Darboux transformations, how different transformations can be combined with each other or how they can be made from elementary blocks, with attention to properties of quantities independent of a choice of a coordinate system. The project includes plans to implement the results in practical tools such as computer software for solving differential equations. Another broader impact of the project will arise from providing opportunities for students to participate in the research.The specific goal of this project is to classify all Darboux transformations (DTs) for operators of general form using a previously-developed algebraic framework instrumental in the proof of factorization of DTs for two-dimensional Schrödinger operators and in discovery of a new large class of invertible DTs. The project aims to obtain more new types of DTs and to develop exact solution algorithms (including their computational implementation). The investigator intends to develop DTs in the supergeometric setting, which arises in connection with the study of supersymmetric partial differential equations, extending one-dimensional classification results to higher dimensions. The work will consider DTs for differential operators acting on geometric objects, including the algebra of densities and differential forms. Preliminary investigations show that this will require tackling new factorization problems for partial differential operators; the project will explore a differential invariants approach using regularized moving frames. One of the sub-goals is to analyze operators acting on forms on vector bundles. The investigator also plans to construct and study a "universal manifold" of DTs defined by the intertwining relation and to establish a connection between DTs and a recent notion of "higher symmetries" of differential operators. The project will extend a MAPLE-based package to allow work with linear partial differential operators with parametric coefficients in the supergeometric setting.
数学对称性是物体或结构的变换,使研究中的某些特征保持不变。 对称性的知识,在整个物理和工程科学中使用,可以帮助理解一个复杂的对象,用一个更简单的对象来代替它,或者可以帮助隔离物理过程中保存的量,如能量或动量。 该研究项目旨在发展作用于微分方程的一类特殊对称变换的理论,这在自然系统模型中无处不在。 该项目的目的是开发一个新的角度对这些达布变换,结合以前开发的代数方法与几何观点。 这将特别在“超”环境中完成;这指的是与超对称性相关的数学装置,超对称性是与基本粒子研究有关的理论概念。 调查员将研究达布变换的代数方面,不同的变换如何相互结合,或者它们如何从基本块中产生,并注意独立于坐标系选择的量的性质。该项目包括计划在实用工具中实施结果,例如用于求解微分方程的计算机软件。 该项目的另一个更广泛的影响将来自于为学生提供参与研究的机会。该项目的具体目标是使用先前开发的代数框架对一般形式的算子的所有达布变换(DT)进行分类,该框架有助于证明二维薛定谔算子的DT的因式分解,并发现一个新的大类可逆DT。该项目旨在获得更多新型的DT,并开发精确解算法(包括其计算实现)。研究人员打算在超几何环境中开发DT,这与超对称偏微分方程的研究有关,将一维分类结果扩展到更高的维度。这项工作将考虑微分算子作用于几何对象的DT,包括密度代数和微分形式。 初步研究表明,这将需要解决偏微分算子的新因式分解问题;该项目将探索使用正则化移动框架的微分不变量方法。其中一个子目标是分析作用于向量束上的形式的运算符。 研究人员还计划构建和研究由交织关系定义的DT的“通用流形”,并建立DT与微分算子的“高级对称性”的最近概念之间的联系。该项目将扩展一个基于MAPLE的软件包,以允许在超几何设置中使用具有参数系数的线性偏微分算子。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On differential operators over a map, thick morphisms of supermanifolds, and symplectic micromorphisms
关于映射上的微分算子、超流形的厚态射和辛微态射
Laplace invariants of differential operators
微分算子的拉普拉斯不变量
  • DOI:
    10.1215/00192082-8746137
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Hobby, D.;Shemyakova, E.
  • 通讯作者:
    Shemyakova, E.
Differential operators on the superline, Berezinians, and Darboux transformations
超直线、Berezinian 和 Darboux 变换上的微分算子
  • DOI:
    10.1007/s11005-017-0958-7
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Li, Simon;Shemyakova, Ekaterina;Voronov, Theodore
  • 通讯作者:
    Voronov, Theodore
Classification of Multidimensional Darboux Transformations: First Order and Continued Type
多维达布变换的分类:一阶和连续型
Classification of Darboux transformations for operators of the form $\partial_{x}\partial_{y}+a\partial_{x}+b\partial_{y}+c$
$partial_{x}partial_{y} apartial_{x} bpartial_{y} c$ 形式的算子的达布变换分类
  • DOI:
    10.1215/00192082-8165598
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Shemyakova, Ekaterina
  • 通讯作者:
    Shemyakova, Ekaterina
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hobby其他文献

Quotients of primes
素数的商
  • DOI:
    10.2307/2324814
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hobby;D. Silberger
  • 通讯作者:
    D. Silberger
SOLUTIONS TO THE SET-THEORETICAL YANG BAXTER EQUATION DERIVED FROM RELATIONS
关系式导出的集合理论杨·巴克斯特方程的解
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hobby;F. Nichita
  • 通讯作者:
    F. Nichita
The structure of finite algebras
有限代数的结构
  • DOI:
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hobby;R. McKenzie
  • 通讯作者:
    R. McKenzie
Automorphism groups of finite groupoids
有限群胚的自同构群
  • DOI:
    10.1007/s00012-010-0093-0
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    David Hobby;D. Silberger;S. Silberger
  • 通讯作者:
    S. Silberger
Congruence lattices of finite algebras
  • DOI:
    10.1007/bf01190910
  • 发表时间:
    1986-02-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    David Hobby
  • 通讯作者:
    David Hobby

David Hobby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Standard Grant
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
  • 批准号:
    23K03031
  • 财政年份:
    2023
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Fellowship
Algebraic and Differential Geometry
代数和微分几何
  • 批准号:
    2883146
  • 财政年份:
    2023
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Studentship
AF: Small: Algorithmic Algebraic Methods for Systems of Difference-Differential Equations
AF:小:差分微分方程组的算法代数方法
  • 批准号:
    2139462
  • 财政年份:
    2022
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Standard Grant
AF: Small: Solving and Simplifying Algebraic, Differential, and Difference Equations.
AF:小:求解和简化代数方程、微分方程和差分方程。
  • 批准号:
    2007959
  • 财政年份:
    2020
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Standard Grant
CAREER: Differential Equations, Algebraic Geometry, and String Theory
职业:微分方程、代数几何和弦理论
  • 批准号:
    1944952
  • 财政年份:
    2020
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Continuing Grant
Study of algebraic solutions of the differential equations determined by isomonodromic deformations
等单向变形微分方程代数解的研究
  • 批准号:
    19K14506
  • 财政年份:
    2019
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric Numerical Integration Methods for Differential-Algebraic Equations and Their Application to Evolutionary Equations
微分代数方程的几何数值积分方法及其在演化方程中的应用
  • 批准号:
    19K23399
  • 财政年份:
    2019
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Differential/difference algebraic properties of solutions of difference equations
差分方程解的微分/差分代数性质
  • 批准号:
    18K03318
  • 财政年份:
    2018
  • 资助金额:
    $ 11.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了