Quantum Interferometry with Photon-Subtracted Twin Beams
光子相减双光束量子干涉测量
基本信息
- 批准号:1708023
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Physics relies on the experimental observation of Nature and the Universe, with ever more precise measurements. Improving the precision and sensitivity of physical measurement is therefore key to furthering the progress of science. This project will explore a novel method to improve measurements using quantum optics to advance the art of interferometry. Interferometric measurements, in which the phase difference between two waves is measured in order to gain information about the physical laws that cause such a phase difference, are among the most precise classes of measurements. A spectacular illustration of the power of interferometry is the Laser Interferometer Gravitational-wave Observatory (LIGO), which has revealed the minescule ripples of the fabric of space-time caused by the merging of black holes in the cosmos, with three such events observed since the fall of 2015. Other prevalent examples of interferometry include high-resolution phase masks in microlithography, crucial to semiconductor chip fabrication and Moore's law in the computer industry; interferometric techniques for microscopy, such as phase contrast imaging in biology; and Ramsey interferometry, used for precise atomic clocks. Thus the results of this project can have a significant impact in a number of critical areas of technology.The ultimate sensitivity of interferometers such as LIGO and atomic clocks is dictated by quantum mechanics. Indeed, any interferometer, for example an optical one, possesses intrisically quantum mechanical measurement noise floors which are consequences of the quantum duality between the undulatory (electromagnetic wave) and corpuscular (photon) nature of light. Classical interferometers, such as LIGO and atomic clocks in their current versions, are shot-noise limited, which means their phase noise floor is of the order of the reciprocal of the square root of the average particle number (photon or atom) used in a measurement. However, this is far from the ultimate, Heisenberg, limit, which is of the order of the reciprocal of the average particle number. This limit can be reached by "quantum engineering" the light waves used in the interferometer. This project puts forward a new type of Heisenberg-limited interferometer, in which twin optical beams, the photon-correlated beams emitted by a optical parametric amplifier, see one photon subtracted from them in an indistinguishable manner before they are used as input in a Mach-Zehnder interferometer. The project is unique among all previous proposals for Heisenberg-limited interferometry in that it features a Heisenberg-limited noise floor, a strong, direct interference fringe signal, and is experimentally feasible using state-of-the-art quantum optics technology that was previously demonstrated in the group of Prof. Pfister at the University of Virginia. If successful, this project could bring about multiple orders of magnitude measurement sensitivity improvement in phase-contrast imaging, which would allow nondestructive in vivo biological imaging by applying quantum light.
物理学依赖于对自然和宇宙的实验观察,并进行更精确的测量。 因此,提高物理测量的精度和灵敏度是推动科学进步的关键。 这个项目将探索一种新的方法来改善测量使用量子光学推进干涉测量的艺术。 干涉测量是最精确的测量方法之一,其中测量两个波之间的相位差,以获得有关导致这种相位差的物理定律的信息。 激光干涉仪引力波天文台(LIGO)是干涉测量力量的一个壮观的例证,它揭示了宇宙中黑洞合并引起的时空结构的微小涟漪,自2015年秋季以来观察到了三次这样的事件。干涉测量的其他流行例子包括微光刻中的高分辨率相位掩模,这对半导体芯片制造和计算机工业中的摩尔定律至关重要;显微镜的干涉测量技术,如生物学中的相位对比成像;以及用于精确原子钟的拉姆齐干涉测量。因此,该项目的结果可能会对许多关键技术领域产生重大影响。干涉仪(如LIGO和原子钟)的最终灵敏度取决于量子力学。事实上,任何干涉仪,例如光学干涉仪,都具有量子力学测量噪声基底,这是光的波动(电磁波)和微粒(光子)性质之间的量子对偶性的结果。经典的干涉仪,如LIGO和原子钟在其当前版本中,是散粒噪声有限的,这意味着它们的相位噪声基底是测量中使用的平均粒子数(光子或原子)的平方根的倒数。然而,这离最终的海森堡极限还很远,海森堡极限是平均粒子数的倒数。这个极限可以通过干涉仪中使用的光波的“量子工程”来达到。该项目提出了一种新型的海森堡限幅干涉仪,其中双光束,即光学参量放大器发射的光子相关光束,在它们被用作马赫-曾德尔干涉仪的输入之前,以不可分辨的方式从它们中减去一个光子。该项目在海森伯有限干涉测量的所有先前提案中是独一无二的,因为它具有海森伯有限噪声基底,强烈的直接干涉条纹信号,并且使用最先进的量子光学技术在实验上是可行的,该技术先前在弗吉尼亚大学的Pfister教授小组中得到了证明。如果成功,该项目可以带来相位衬度成像的多个数量级的测量灵敏度提高,这将允许通过应用量子光进行无损体内生物成像。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum tomography of a single-photon state by photon-number parity measurements
通过光子数奇偶校验测量进行单光子态的量子断层扫描
- DOI:10.1364/cleo_qels.2019.ff1a.6
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Nehra, Rajveer;Win, Aye;Eaton, Miller;Sridhar, Niranjan;Shahrokhshahi, Reihaneh;Gerrits, Thomas;Lita, Adriana;Nam, Sae Woo;Pfister, Olivier
- 通讯作者:Pfister, Olivier
State-independent quantum state tomography by photon-number-resolving measurements
通过光子数分辨测量进行与状态无关的量子态层析成像
- DOI:10.1364/optica.6.001356
- 发表时间:2019
- 期刊:
- 影响因子:10.4
- 作者:Nehra, Rajveer;Win, Aye;Eaton, Miller;Shahrokhshahi, Reihaneh;Sridhar, Niranjan;Gerrits, Thomas;Lita, Adriana;Nam, Sae Woo;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Experimental preparation of Gottesman-Kitaev-Preskill states by photon-number-resolving detection
通过光子数分辨检测制备 Gottesman-Kitaev-Preskill 态的实验
- DOI:10.1364/cleo_qels.2019.fth4d.5
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Eaton, Miller;Nehra, Rajveer;Pfister, Olivier
- 通讯作者:Pfister, Olivier
Heisenberg-limited quantum interferometry with multiphoton-subtracted twin beams
- DOI:10.1103/physreva.103.013726
- 发表时间:2021-01
- 期刊:
- 影响因子:2.9
- 作者:M. Eaton;Rajveer Nehra;A. Win;O. Pfister
- 通讯作者:M. Eaton;Rajveer Nehra;A. Win;O. Pfister
Non-Gaussian and Gottesman–Kitaev–Preskill state preparation by photon catalysis
通过光子催化制备非高斯和 Gottesman—Kitaev—Preskill 态
- DOI:10.1088/1367-2630/ab5330
- 发表时间:2019
- 期刊:
- 影响因子:3.3
- 作者:Eaton, Miller;Nehra, Rajveer;Pfister, Olivier
- 通讯作者:Pfister, Olivier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Pfister其他文献
Spatiotemporal graph states from a single optical parametric oscillator
来自单个光参量振荡器的时空图状态
- DOI:
10.1103/physreva.101.043832 - 发表时间:
2020 - 期刊:
- 影响因子:2.9
- 作者:
Rongguo Yang;Jing Zhang;Israel Klich;Carlos González-Arciniegas;Olivier Pfister - 通讯作者:
Olivier Pfister
Universal quantum frequency comb measurements by spectral mode-matching
通过光谱模式匹配进行通用量子频率梳测量
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
B. Dioum;Virginia d'Auria;A. Zavatta;Olivier Pfister;G. Patera - 通讯作者:
G. Patera
Jumping to hyperentanglement
跳跃到超纠缠态
- DOI:
10.1038/nphoton.2015.131 - 发表时间:
2015-07-30 - 期刊:
- 影响因子:32.900
- 作者:
Olivier Pfister - 通讯作者:
Olivier Pfister
Experimental Generation of Cluster-state Entanglement by Phase Modulation of the Quantum Optical Frequency Comb
量子光频梳相位调制簇态纠缠的实验生成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Xuan;Chun;C. González;Avi Pe'er;Olivier Pfister - 通讯作者:
Olivier Pfister
Olivier Pfister的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Pfister', 18)}}的其他基金
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219672 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: The Phase-Modulated Quantum Optical Frequency Comb: A Simple Platform for One-Way Quantum Computing
NSF-BSF:相位调制量子光频梳:单向量子计算的简单平台
- 批准号:
2112867 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
RAISE-EQuIP: Quantum mux/demux: the quantum optical frequency comb as a scalable quantum encoding resource
RAISE-EQuIP:量子复用/解复用:量子光学频率梳作为可扩展的量子编码资源
- 批准号:
1842641 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NSF-BSF: Squeezing the Optical Frequency Comb: Applications to Quantum Computing and Quantum Measurement
NSF-BSF:挤压光频梳:在量子计算和量子测量中的应用
- 批准号:
1820882 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Quantum Computing and Quantum Simulation in the Optical Frequency Comb
光频梳中的量子计算与量子模拟
- 批准号:
1521083 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Massively Scalable Quantum Entanglement and Quantum Processing in the Optical Frequency Comb
光频梳中的大规模可扩展量子纠缠和量子处理
- 批准号:
1206029 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
MRI-R2 Consortium: Development of a Photon-Number-Resolving Detector System for Universal Quantum Computing
MRI-R2 联盟:开发用于通用量子计算的光子数分辨探测器系统
- 批准号:
0960047 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
One-Way Quantum Computing in the Optical Frequency Comb
光频梳中的单向量子计算
- 批准号:
0855632 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Multipartite Entanglement, Multimode Squeezing, and Non-Gaussian Light from Quantum Cascades and Concurrences
量子级联和并发中的多部分纠缠、多模压缩和非高斯光
- 批准号:
0555522 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Quantum: Ultrastable heterodyne quantum information
量子:超稳定外差量子信息
- 批准号:
0622100 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于seismic interferometry的海上勘探数据重建方法研究
- 批准号:40904030
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
- 批准号:
2308767 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
- 批准号:
2885950 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Robust, Trapped Ultracold Atom Interferometry For Six-axis Inertial Sensing
用于六轴惯性传感的稳健、俘获超冷原子干涉仪
- 批准号:
EP/Y004728/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
Collaborative Research: Experimental General Relativity using Radio Interferometry of a Black Hole Photon Ring
合作研究:利用黑洞光子环射电干涉测量的实验广义相对论
- 批准号:
2307887 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
LEAPS-MPS: Constraining Stellar Structure and Evolution of Massive Stars with Optical Interferometry
LEAPS-MPS:利用光学干涉测量法约束大质量恒星的恒星结构和演化
- 批准号:
2316286 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Investigation of infrasonic propagation characteristics in mountainous areas using infrasonic interferometry
利用次声干涉测量法研究山区次声传播特性
- 批准号:
23K13201 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists