Strain Engineering of Band Structure and Electronic Properties in Two Dimensional Materials.
二维材料能带结构和电子特性的应变工程。
基本信息
- 批准号:1708158
- 负责人:
- 金额:$ 42.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical abstractThe discovery of new material properties has historically been an engine for technological advances, prosperity and societal well-being. This prospect has fueled an age-old search for new materials and for techniques to endow existing ones with desirable properties. Traditionally, materials discovery was the result of painstaking exploration of a myriads of chemically synthesized compounds. A new era of materials research was ushered in with the breakthrough isolation of free standing two-dimensional (2D) crystals, such as graphene, and the discovery of a slew of their exceptional physical properties. One of the unique characteristics of these materials is that, with all the atoms residing at the surface, it is possible to access and manipulate their properties by non-chemical means. In particular the introduction of strain by stretching or bending the 2D membrane, can play a crucial role in shaping the material and electronic properties. This research is aimed at developing strategies to induce, to characterize and to exploit the extraordinary potential of strain as a handle for manipulating and engineering electronic and material properties. By modifying the distance between atoms and the geometry of the crystal structure, strain can transform the material properties and has the potential to radically change its behavior. The development of methods to introduce strain in a controlled matter will make it possible to systematically investigate novel strain-induced material properties and unleash their potential for device applications. The research project has a strong educational component that provides excellent opportunities for students and trainees at all levels to gain hands-on experience with advanced scientific equipment and to develop sophisticated data analysis skills. Technical abstractOne of the remarkable qualities of two-dimensional (2D) crystals is the possibility to use external strain to manipulate in a controlled manner their electronic properties. These materials are highly stretchable, have large Young's modulus, low residual stress and enormously large breaking strength which enables them to sustain very large strains without breaking. This research aims at developing techniques to induce, characterize and exploit the extraordinary potential of strain as a handle for manipulating and engineering electronic properties. Introduction of strain by stretching or bending a 2D membrane, makes it possible to change and control the lattice spacing and crystal structure and can play a crucial role in shaping the band structure and the electron dynamics. The team investigates novel properties expected to arise in the presence of strain, such as opening or closing spectral gaps, strain induced superconductivity and topologically protected transport properties by controlling the strength and geometry of the induced strain. Local probes such as scanning tunneling microscopy and Landau level spectroscopy as well as global transport measurements are used to characterize the strain-induced electronic properties. The materials studied include graphene, transition metal dichalcogenides and group IV monochalcogenides, where the effects of strain on the band structure and electron dynamics are expected to be most pronounced.
非技术摘要新材料特性的发现历来是技术进步、繁荣和社会福祉的引擎。这一前景推动了对新材料和赋予现有材料所需性能的技术的长期探索。传统上,材料的发现是对无数化学合成化合物进行艰苦探索的结果。随着石墨烯等独立二维(2D)晶体的突破性分离以及一系列特殊物理特性的发现,迎来了材料研究的新时代。这些材料的独特特性之一是,由于所有原子都位于表面,因此可以通过非化学手段访问和操纵它们的特性。特别是通过拉伸或弯曲2D膜来引入应变,可以在材料和电子特性的成形中发挥至关重要的作用。这项研究的目的是制定战略,以诱导,表征和利用应变作为操纵和工程电子和材料性能的手柄的非凡潜力。通过改变原子之间的距离和晶体结构的几何形状,应变可以改变材料的性质,并有可能从根本上改变其行为。在受控物质中引入应变的方法的发展将使得有可能系统地研究新的应变诱导材料特性并释放其在器件应用中的潜力。该研究项目有一个强大的教育组成部分,为各级学生和受训人员提供了极好的机会,以获得先进科学设备的实践经验,并培养复杂的数据分析技能。二维(2D)晶体的显著特性之一是可以使用外部应变以受控方式操纵其电子性质。这些材料是高度可拉伸的,具有大的杨氏模量、低的残余应力和极大的断裂强度,这使得它们能够承受非常大的应变而不断裂。本研究旨在开发技术,以诱导,表征和利用应变作为操纵和工程电子特性的手柄的非凡潜力。通过拉伸或弯曲2D膜来引入应变,使得可以改变和控制晶格间距和晶体结构,并且可以在形成能带结构和电子动力学方面发挥至关重要的作用。该团队研究了在应变存在下预计会出现的新特性,例如打开或关闭光谱间隙,应变诱导的超导性和通过控制诱导应变的强度和几何形状来拓扑保护的传输特性。局部探针,如扫描隧道显微镜和朗道能级光谱以及全球运输测量用于表征应变诱导的电子性质。研究的材料包括石墨烯,过渡金属二硫属化物和IV族单硫属化物,其中应变对能带结构和电子动力学的影响预计是最明显的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strained fold-assisted transport in graphene systems
石墨烯系统中的应变折叠辅助运输
- DOI:10.1103/physrevb.94.125422
- 发表时间:2016
- 期刊:
- 影响因子:3.7
- 作者:Carrillo-Bastos, R.;León, C.;Faria, D.;Latgé, A.;Andrei, E. Y.;Sandler, N.
- 通讯作者:Sandler, N.
Modeling of the gate-controlled Kondo effect at carbon point defects in graphene
- DOI:10.1103/physrevb.97.155419
- 发表时间:2018-04-18
- 期刊:
- 影响因子:3.7
- 作者:May, Daniel;Lo, Po-Wei;Anders, Frithjof B.
- 通讯作者:Anders, Frithjof B.
Visualizing Strain-Induced Pseudomagnetic Fields in Graphene through an hBN Magnifying Glass
- DOI:10.1021/acs.nanolett.6b05228
- 发表时间:2017-05-01
- 期刊:
- 影响因子:10.8
- 作者:Jiang, Yuhang;Mao, Jinhai;Andrei, Eva Y.
- 通讯作者:Andrei, Eva Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva Andrei其他文献
Eva Andrei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva Andrei', 18)}}的其他基金
MRI: Development of an Ultra-High Vacuum Cryogen-free Low Temperature Proximal Probe System for the Exploration of Low Dimensional Materials and Nano-devices
MRI:开发超高真空无冷冻剂低温近端探针系统,用于探索低维材料和纳米器件
- 批准号:
1337871 - 财政年份:2013
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
2012 Correlated Electron Systems GRC and GRS; Mount Holyoke College; South Hadley, MA; June 23-29, 2012
2012 相关电子系统GRC和GRS;
- 批准号:
1162016 - 财政年份:2012
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Electronic Properties of Two Dimensional Electron Systems: Exploring the Role of Dimensionality Boundaries and Interfaces.
二维电子系统的电子特性:探索维度边界和界面的作用。
- 批准号:
1207108 - 财政年份:2012
- 资助金额:
$ 42.98万 - 项目类别:
Continuing Grant
Experimental Studies of Graphene Layers
石墨烯层的实验研究
- 批准号:
0906711 - 财政年份:2009
- 资助金额:
$ 42.98万 - 项目类别:
Continuing Grant
Experiments on Time-Resolved Transport and Imaging of Moving Vortex Matter
运动涡旋物质的时间分辨输运与成像实验
- 批准号:
0456473 - 财政年份:2005
- 资助金额:
$ 42.98万 - 项目类别:
Continuing Grant
Dynamic Transitions in Magnetic Vortex Lattices
磁涡晶格中的动态转变
- 批准号:
0102692 - 财政年份:2001
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Experimental Study of the Magnetic Flux Line Lattice in Superconductors
超导体磁通线晶格的实验研究
- 批准号:
9705389 - 财政年份:1997
- 资助金额:
$ 42.98万 - 项目类别:
Continuing Grant
Experimental Study of Two Dimensional Electron Layers
二维电子层的实验研究
- 批准号:
9401561 - 财政年份:1994
- 资助金额:
$ 42.98万 - 项目类别:
Continuing Grant
ROW: Experimental Study on the Finite-Frequency Response of the High Temperature Superconductors
ROW:高温超导体有限频率响应的实验研究
- 批准号:
9306951 - 财政年份:1993
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Experiments on a Two Dimensional Quantum Wigner Crystal
二维量子维格纳晶体的实验
- 批准号:
9218501 - 财政年份:1992
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Band Structure Engineering for Self-Powered Visible Light Driven Photocatalyst
自供电可见光驱动光催化剂的能带结构工程
- 批准号:
23KJ1404 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Microbubble resonator dispersion engineering for blue-band soliton comb generation
用于蓝带孤子梳生成的微泡谐振器色散工程
- 批准号:
22K14621 - 财政年份:2022
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of a mechanical structure enabling power generation and vibration reduction via band engineering
通过带工程实现可发电和减振的机械结构
- 批准号:
21KK0252 - 财政年份:2022
- 资助金额:
$ 42.98万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Band Structure Engineering of Triazine Covalent Frameworks toward Water Splitting Electrocatalyst
三嗪共价框架的能带结构工程用于水分解电催化剂
- 批准号:
21K14734 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Band Engineering of Dirac Materials for Device Applications
用于设备应用的狄拉克材料能带工程
- 批准号:
RGPIN-2016-04793 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Discovery Grants Program - Individual
Theoretical design of magnetic topological material by high-throughput magnetism/band engineering
高通量磁/能带工程磁性拓扑材料的理论设计
- 批准号:
21H01789 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interface charge engineering for manipulation of band alignment at dielectric interfaces and demonstration of its impact on device characteristics
用于操纵介电界面能带排列的界面电荷工程及其对器件特性的影响的演示
- 批准号:
21H04550 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
'Investigating the impact of Bismuth on the band gap engineering and morphological properties of III/V semiconductor materials grown using MBE'.
“研究铋对使用 MBE 生长的 III/V 半导体材料的带隙工程和形态特性的影响”。
- 批准号:
2602258 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Studentship
Band-edge engineering and property control in wide band-gap sulfide semiconductors
宽带隙硫化物半导体的带边工程和性能控制
- 批准号:
21K04906 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On-wafer band engineering for Ge epitaxial layers selectively grown on Si
在 Si 上选择性生长 Ge 外延层的晶圆上能带工程
- 批准号:
21H01367 - 财政年份:2021
- 资助金额:
$ 42.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)