Three- and Four-Dimensional Triangulations and Mathematical Visualization

三维和四维三角测量和数学可视化

基本信息

  • 批准号:
    1708239
  • 负责人:
  • 金额:
    $ 26.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Topology is the study of geometric objects, in which lengths and angles are ignored, but connectivity is paid attention to. A triangulation is a subdivision of a surface into triangles. Analogously, we subdivide a three-dimensional space into tetrahedra, and higher dimensional spaces into similar higher dimensional geometric shapes. Triangulations are one of the most effective ways to describe topological objects, particularly for use with computers. There are many ways to triangulate a topological object, each of which may be better or worse for a particular purpose. However, different triangulations can be related to each other by sequences of simple, local moves. One of the central goals of this NSF funded project is to better understand how useful properties of triangulations change as we alter them by these moves. Another goal centers on mathematical visualization to aid in research, pedagogy and outreach. This includes finding effective ways to visualize mathematical objects using new technologies, including 3D printing, virtual, and augmented reality. The PI has developed an undergraduate course integrating 3D design skills with the mathematics needed to produce 3D printed objects. He plans to extend this pedagogical method to other subjects in quantitative science. With colleagues, the PI is planning to write a resource book to help others create and teach mathematics with 3D printing. Outreach activities to the broader community will include expository papers, public talks, YouTube videos, open-source visualization apps, and collaboration with mathematics museums. In this NSF funded project, together with his collaborators, the PI aims to study classes of triangulations, including triangulations with essential edges or angle structures, 1-efficient, geometric or veering triangulations: relations between these classes and topological and geometric invariants, methods of constructing triangulations in these classes, and the structure of subgraphs of the Pachner graph of triangulations corresponding to these classes. Another aim is to generalize properties and results from three-dimensional to four-dimensional triangulations. The methods used will be largely combinatorial, and accessible to beginning graduate and undergraduate students. One visualization project is to find canonical 3D geometric representations of topological objects, so that models can be 3D printed. Subjects include Seifert surfaces, fibrations of knot complements, and conformally correct tilings of surfaces. Algebraic descriptions and discrete optimization processes will be used to generate geometry. Other projects in 3D printing include study and construction of interesting linkages and other mechanisms. Previous work in implementing virtual reality simulations of 3D hyperbolic geometry, and the product of 2D hyperbolic geometry with the line, has already been successful in inspiring mathematicians, physicists, and members of the public. The PI plans to extend this work to the other Thurston geometries and beyond, aid other researchers in visualizing objects they are interested in within these geometries, and construct engaging interactive experiences to make these geometries more accessible to the public. Finally, the PI aims to implement interactive topological simulations, for example to allow a user to physically manipulate a virtual sphere that behaves as in the context of sphere eversion.
拓扑学是对几何对象的研究,其中忽略了长度和角度,但关注连通性。三角剖分是将曲面细分为三角形。类似地,我们将三维空间细分为四面体,将高维空间细分为类似的高维几何形状。三角剖分是描述拓扑对象的最有效方法之一,特别是在计算机中使用。有许多方法可以对拓扑对象进行三角测量,每种方法对于特定目的都可能更好或更差。然而,不同的三角剖分可以通过简单的局部移动序列彼此关联。这个NSF资助的项目的中心目标之一是更好地理解三角测量的有用属性如何随着我们通过这些移动改变它们而改变。另一个目标是数学可视化,以帮助研究,教学和推广。这包括找到使用新技术(包括3D打印、虚拟和增强现实)可视化数学对象的有效方法。PI开发了一门本科课程,将3D设计技能与生产3D打印物体所需的数学相结合。他计划将这种教学方法推广到定量科学的其他学科。PI计划与同事一起编写一本资源书,以帮助其他人使用3D打印创建和教授数学。面向更广泛社区的外联活动将包括临时论文、公开讲座、YouTube视频、开源可视化应用程序以及与数学博物馆的合作。在这个NSF资助的项目中,PI与他的合作者一起研究三角剖分的类别,包括具有基本边缘或角度结构的三角剖分,1-有效的,几何或转向三角剖分:这些类别与拓扑和几何不变量之间的关系,在这些类别中构建三角剖分的方法,以及对应于这些类别的三角剖分的Pachner图的子图的结构。另一个目的是推广性质和结果从三维到四维三角剖分。所使用的方法将主要是组合,并开始研究生和本科生访问。一个可视化项目是找到拓扑对象的规范3D几何表示,以便可以3D打印模型。主题包括塞弗特表面,纤维化的结补充,并符合正确的瓷砖的表面。代数描述和离散优化过程将用于生成几何图形。3D打印的其他项目包括研究和构建有趣的联系和其他机制。以前在实现3D双曲几何的虚拟现实模拟以及2D双曲几何与直线的乘积方面的工作已经成功地激励了数学家,物理学家和公众。PI计划将这项工作扩展到其他Thurston几何形状及其他几何形状,帮助其他研究人员在这些几何形状中可视化他们感兴趣的对象,并构建引人入胜的交互式体验,使这些几何形状更容易为公众所接受。最后,PI旨在实现交互式拓扑模拟,例如允许用户物理操纵虚拟球体,其行为与球体外翻的情况相同。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomology Fractals
上同调分形
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bachman, David;Schleimer, Saul;Segerman, Henry
  • 通讯作者:
    Segerman, Henry
Möbius Cellular Automata Scarves
莫比乌斯元胞自动机围巾
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matsumoto, Elisabetta A.;Segerman, Henry;Serriere, Fabienne
  • 通讯作者:
    Serriere, Fabienne
Ray-Marching Thurston Geometries
  • DOI:
    10.1080/10586458.2022.2030262
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Rémi Coulon;Elisabetta A. Matsumoto;Henry Segerman;Steve J. Trettel
  • 通讯作者:
    Rémi Coulon;Elisabetta A. Matsumoto;Henry Segerman;Steve J. Trettel
Connectivity of triangulations without degree one edges under 2-3 and 3-2 moves
2-3 和 3-2 移动下无度一边的三角剖分的连通性
Magnetic Sphere Constructions
磁球结构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Henry Segerman其他文献

Incompressible surfaces in handlebodies and boundary reducible 3-manifolds
  • DOI:
    10.1016/j.topol.2010.11.014
  • 发表时间:
    2011-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    João Miguel Nogueira;Henry Segerman
  • 通讯作者:
    Henry Segerman
Shaped to roll along a programmed periodic path
形状为沿着编程的周期路径滚动
  • DOI:
    10.1038/d41586-023-02335-9
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Elisabetta A. Matsumoto;Henry Segerman
  • 通讯作者:
    Henry Segerman
3D Printing for Mathematical Visualisation
  • DOI:
    10.1007/s00283-012-9319-7
  • 发表时间:
    2012-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henry Segerman
  • 通讯作者:
    Henry Segerman
Non-geometric Veering Triangulations
非几何转向三角测量
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    C. Hodgson;Ahmad Issa;Henry Segerman
  • 通讯作者:
    Henry Segerman
Veering triangulations admit strict angle structures
转向三角测量允许严格的角度结构
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Hodgson;J. Rubinstein;Henry Segerman;Stephan Tillmann
  • 通讯作者:
    Stephan Tillmann

Henry Segerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Henry Segerman', 18)}}的其他基金

Conference: 2024 Redbud Topology Conference
会议:2024紫荆花拓扑会议
  • 批准号:
    2405684
  • 财政年份:
    2024
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Veering Triangulations and Visualization
转向三角测量和可视化
  • 批准号:
    2203993
  • 财政年份:
    2022
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
2015 Redbud Geometry/Topology Conference
2015紫荆花几何/拓扑会议
  • 批准号:
    1463957
  • 财政年份:
    2015
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant

相似国自然基金

水稻R2R3-MYB转录因子FOUR LIPS介导BR信号途径调控叶夹角发育
  • 批准号:
    32300302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Knots and surfaces in three- and four-manifolds: Applications of symplectic topology and quantum algebra to low dimensional topology
三流形和四流形中的结和表面:辛拓扑和量子代数在低维拓扑中的应用
  • 批准号:
    0906258
  • 财政年份:
    2009
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Development of a three dimensional four mirror optical cavity for laser-Compton scattering
激光康普顿散射三维四镜光学腔的研制
  • 批准号:
    21340070
  • 财政年份:
    2009
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Three-dimensional mapping of electrical transport characteristics in organic semiconductors using independently-driven four-probe method
使用独立驱动的四探针方法三维绘制有机半导体中的电传输特性
  • 批准号:
    21760024
  • 财政年份:
    2009
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Three-dimensional topology and some four-dimensional contexts
三维拓扑和一些四维上下文
  • 批准号:
    0706740
  • 财政年份:
    2007
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
Non-Commutative Algebraic Phenomena in the Topology of Three- and Four-dimensional Spaces
三维和四维空间拓扑中的非交换代数现象
  • 批准号:
    0104275
  • 财政年份:
    2001
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Continuing Grant
Fabrication of photonic crystals by three dimensional interference with four waves
四波三维干涉制备光子晶体
  • 批准号:
    11650042
  • 财政年份:
    1999
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Guiding of Cardiovascular Surgery with Three and Four-dimensional Reconstruction of Transesophageal Echocardiograpy
经食管超声心动图三、四维重建指导心血管手术
  • 批准号:
    04404056
  • 财政年份:
    1992
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
Finite-size Scaling of Four Helium Near the Superfluid Transition and Two-Dimensional Behavior of Three Helium in Four Helium Films
超流转变附近四氦的有限尺寸缩放以及四氦膜中三氦的二维行为
  • 批准号:
    8905771
  • 财政年份:
    1989
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Continuing Grant
Helium Three and Helium Four in the Two Dimensional and Three Dimensional Limit
二维和三维极限中的氦三和氦四
  • 批准号:
    8007302
  • 财政年份:
    1980
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Continuing Grant
Two Problems in the Topology of Three- and Four-Dimensional Manifolds
三、四维流形拓扑中的两个问题
  • 批准号:
    7702758
  • 财政年份:
    1977
  • 资助金额:
    $ 26.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了