Collaborative Research: Novel Terahertz Generators Based on Magnetic Materials

合作研究:基于磁性材料的新型太赫兹发生器

基本信息

  • 批准号:
    1708885
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Generators of electromagnetic waves with frequencies near one terahertz are needed for several types of practically useful applications such as new bio-medical imaging techniques, highly sensitive chemical sensors and energy-efficient wireless computer chips. Existing generators of terahertz radiation have significant deficiencies that severely limit their usefulness. These generators either work at temperatures below room temperature or are based on expensive and bulky laser systems. The goal of this project is to create a new type of terahertz generator that is compact, inexpensive and works at room temperature. These generators are based on readily available magnetic materials such as iron oxide and nickel oxide and will operate via conversion of magnetic oscillations in these materials into terahertz electromagnetic waves. The goal of the proposed research program will be achieved via a collaborative effort of a synergistic team of experts in magnetic device fabrication (University of California, Irvine) and leading theorists in the field of magnetic devices (Oakland University). The results of the proposed research program will impact society in multiple ways. The new method of terahertz signal generation will help maintain the US leadership in terahertz technology. A number of undergraduate and graduate students will be trained in modern device fabrication techniques, which will enhance the US nanotechnology workforce. The outreach activities, including demonstrations on magnetism and superconductivity, will target middle school students from underrepresented groups, and will help attract minorities to science and engineering.The proposed research program is based on a substantial preliminary experimental and theoretical work of the proposers, who experimentally demonstrated spin pumping in Pt/hematite bi-layers, and theoretically predicted that a bi-layer of a heavy metal (Pt) and an antiferromagnetic material with strong easy-plane and weak easy-axis magnetic anisotropies can function as a source of coherent THz radiation when direct current is applied to the Pt layer. In such antiferromagnet-based auto-oscillators, an electric current in the Pt layer injects pure spin Hall current into the antiferromagnet and drives its order parameter into a state of persistent precession. This precession excited by the component of spin current perpendicular to the easy plane anisotropy of the antiferromagnet is non-uniform in time due to the weak easy-axis magnetic anisotropy present within the easy plane anisotropy. The frequency of the antiferromagnetic order parameter oscillations is proportional to the injected spin current, and increases from approximately 0.1 THz to 2.0 THz with increasing current density in the Pt layer. The order parameter oscillations are converted into a THz electromagnetic signal with electric field amplitude exceeding 1 V/cm via spin pumping and the inverse spin-Hall effect in the Pt layer. The dynamics of the THz-frequency room-temperature antiferromagnetic auto-oscillator is mathematically equivalent to that of a Josephson junction auto-oscillator, with the energy of the weak uniaxial magnetic anisotropy of the antiferromagnet playing the role of the Josephson energy. The demonstration of these compact, tunable and structurally simple antiferromagnet-based sources of THz radiation will enable the development of compact and inexpensive solid state THz devices for imaging, chemical detection, wireless chip-to-chip communication and THz spectroscopy/microscopy.
频率接近1太赫兹的电磁波发生器需要用于几种实际有用的应用,例如新的生物医学成像技术、高灵敏度化学传感器和节能无线计算机芯片。现有的太赫兹辐射发生器存在严重缺陷,严重限制了它们的用途。这些发电机要么在低于室温的温度下工作,要么基于昂贵而笨重的激光系统。这个项目的目标是创造一种新型的太赫兹发生器,它结构紧凑,价格低廉,可以在室温下工作。这些发电机基于易于获得的磁性材料,如氧化铁和氧化镍,并将通过将这些材料中的磁振荡转换为太赫兹电磁波来工作。拟议研究计划的目标将通过磁性器件制造专家(加州大学欧文分校)和磁性器件领域领先理论家(奥克兰大学)的协同团队的合作努力来实现。拟议研究计划的结果将以多种方式影响社会。太赫兹信号产生的新方法将有助于保持美国在太赫兹技术方面的领导地位。一些本科生和研究生将接受现代设备制造技术的培训,这将增强美国的纳米技术劳动力。推广活动,包括磁性和超导性的演示,将针对来自代表性不足群体的中学生,并将有助于吸引少数民族进入科学和工程领域。提出的研究计划是基于大量的初步实验和理论工作,他们实验证明了Pt/赤铁矿双层中的自旋泵浦,并从理论上预测了当直流电作用于Pt层时,重金属(Pt)和具有强易平面和弱易轴各向异性的反铁磁性材料的双层可以作为相干太赫兹辐射的来源。在这种基于反铁磁体的自激振荡器中,铂层中的电流将纯自旋霍尔电流注入到反铁磁体中,并驱动其序参量进入持续进动状态。垂直于反铁磁体易面各向异性的自旋电流分量激发的进动在时间上是不均匀的,这是由于易面各向异性内存在弱易轴磁各向异性。反铁磁序参量振荡的频率与注入的自旋电流成正比,并随着Pt层中电流密度的增加从约0.1 THz增加到2.0 THz。通过Pt层中的自旋泵浦和逆自旋霍尔效应,将阶参量振荡转化为电场幅值超过1 V/cm的太赫兹电磁信号。太赫兹频率室温反铁磁自振子的动力学在数学上等同于约瑟夫森结自振子的动力学,其中反铁磁体弱单轴磁各向异性的能量扮演约瑟夫森能量的角色。这些紧凑,可调谐和结构简单的反铁磁基太赫兹辐射源的演示将使紧凑和廉价的固态太赫兹器件的发展成为可能,用于成像,化学检测,无线芯片对芯片通信和太赫兹光谱/显微镜。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Immunity of nanoscale magnetic tunnel junctions with perpendicular magnetic anisotropy to ionizing radiation
  • DOI:
    10.1038/s41598-020-67257-2
  • 发表时间:
    2020-06-23
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Montoya, Eric Arturo;Chen, Jen-Ru;Krivorotov, Ilya N.
  • 通讯作者:
    Krivorotov, Ilya N.
Magnetization reversal driven by low dimensional chaos in a nanoscale ferromagnet
  • DOI:
    10.1038/s41467-019-08444-2
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Montoya, Eric Arturo;Perna, Salvatore;Krivorotov, Ilya N.
  • 通讯作者:
    Krivorotov, Ilya N.
Inversion of the Spin-Torque Effect in Mtjs Via Resonant Magnon Scattering
通过共振磁振子散射反演 Mtjs 中的自旋扭矩效应
  • DOI:
    10.1109/tmrc49521.2020.9366713
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    BARSUKOV, Igor;LEE, Han Kyu;JARA, Alejandro A.;CHEN, Yu-Jin;GONCALVES, Alexandre M.;SHA, Chengcen;KATINE, Jordan A.;ARIAS, Rodrigo E.;IVANOV, Boris A.;KRIVOROTOV, Ilya N.
  • 通讯作者:
    KRIVOROTOV, Ilya N.
High rectification sensitivity of radiofrequency signal through adiabatic stochastic resonance in nanoscale magnetic tunnel junctions
  • DOI:
    10.1063/1.5123466
  • 发表时间:
    2019-11-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Algarin, J. M.;Ramaswamy, B.;Waks, E.
  • 通讯作者:
    Waks, E.
Controlling Magnon Interaction by a Nanoscale Switch
通过纳米级开关控制磁振子相互作用
  • DOI:
    10.1021/acsami.1c01562
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Etesamirad, Arezoo;Rodriguez, Rodolfo;Bocanegra, Joshua;Verba, Roman;Katine, Jordan;Krivorotov, Ilya N.;Tyberkevych, Vasyl;Ivanov, Boris;Barsukov, Igor
  • 通讯作者:
    Barsukov, Igor
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Krivorotov其他文献

Ilya Krivorotov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Krivorotov', 18)}}的其他基金

Energy-efficient phase-locked arrays of spin torque nano-oscillators based on current-induced torques in magnetic metals
基于磁性金属电流感应扭矩的节能锁相自旋扭矩纳米振荡器阵列
  • 批准号:
    2213690
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Magneto-Acoustic Waves in Chiral Magnetic Systems
EFRI NewLAW:手性磁系统中的非互易磁声波
  • 批准号:
    1641989
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Spin supercurrents in ferromagnetic and antiferromagnetic films
铁磁和反铁磁薄膜中的自旋超电流
  • 批准号:
    1610146
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Spin Torque Oscillators Based on Electric and Thermal Spin Currents in Self Assembled Ferromagnetic Nanowire Arrays
合作研究:自组装铁磁纳米线阵列中基于电和热自旋电流的自旋扭矩振荡器
  • 批准号:
    1309416
  • 财政年份:
    2013
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
MWN: Magnetization Dynamics in Metallic Ferromagnetic Nanostructures
MWN:金属铁磁纳米结构的磁化动力学
  • 批准号:
    1210850
  • 财政年份:
    2012
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Signal Processing Devices Based on Spin-Torque Nano-Oscillators
合作研究:基于自旋扭矩纳米振荡器的信号处理器件
  • 批准号:
    1002358
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Magnetization Dynamics Excited by Spin Transfer Torque
职业:自旋转移扭矩激发的非线性磁化动力学
  • 批准号:
    0748810
  • 财政年份:
    2008
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spin-Torque Devices for Microwave Nano-Electronics Based on One-Dimensional Array of Magnetic Nano-Contacts
合作研究:基于一维磁性纳米接触阵列的微波纳米电子自旋扭矩器件
  • 批准号:
    0701458
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了