Collaborative Research: Spin-Torque Devices for Microwave Nano-Electronics Based on One-Dimensional Array of Magnetic Nano-Contacts

合作研究:基于一维磁性纳米接触阵列的微波纳米电子自旋扭矩器件

基本信息

  • 批准号:
    0701458
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-15 至 2010-05-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Spin-Torque Devices for Microwave Nano-Electronics Based on One-Dimensional Array of Magnetic Nano-ContactsThe goal of this collaborative proposal is to create an experimental prototype and develop theory of operation of a new microwave device for nano-electronics: tunable microwave oscillator based on a phase-locked array of magnetic nano-contacts coupled by a magnetic waveguide. The proposed device will employ the spin-torque effect in magnetic nano-contacts connected to a ferromagnetic spin wave waveguide. The device operational principles are based on the interactions between spin waves excited in a spin wave waveguide by spin-polarized direct current. The frequency of operation of these devices will be tunable by the external magnetic field, as well as by the direct bias current, in the frequency range between 10 and 25 GHz. The proposed novel quasi-one-dimensional device geometry based on the spin wave waveguides will also allow us to dramatically increase the coupling between the individual nano-contacts (in comparison to the usual two-dimensional geometry), and, therefore, to increase the frequency band of phase-locking and relax the restrictions on the size uniformity of the nano-contacts. This one-dimensional geometry will also increase the power output and reduce the generation linewidth of the oscillator array. The new geometry will allow us to obtain new experimental information on the mechanisms of coupling between individual spin-torque oscillators leading to their phase-locking. Intellectual merit: The proposed research program will result in the development of a new class of tunable nano-sized microwave oscillators with a unique combination of properties required for future microwave nano-electronics: compatibility with silicon-based semiconductor electronics, scalability down to the ultimate nano-scale limits, extremely low power consumption, and radiation hardness due to the absence of semiconductor elements. The proposed research will also advance our understanding of the physics of interaction between spin-polarized current and dynamic magnetization in magnetic nanostructures. Our aim is to use the full benefit of synergistic interaction between the experimental group of the University of California, Irvine, California and the theoretical group of the Oakland University, Rochester, Michigan, to achieve a breakthrough in the development of practical nano-scale device technology for microwave nano-electronics. Broader impacts: The proposed research program will impact our society in multiple ways. The new types of active nano-scale microwave devices to be developed in this program are important for the continuing leadership of the USA in electronics and magnetic recording technology. A number of graduate and postdoctoral students will be exposed to the methods of modern nano-science and nano-technology through the participation in the proposed research. The proposed program will help develop writing, presentation, and mentoring skills of our students through the participation in the manuscript preparation and conference presentations. The program will also substantially enhance and broaden students' educational experience through the collaborative research with the leading foreign and domestic research groups. The practical training in nano-fabrication offered by this program will prepare valuable specialists for the US electronics and magnetic recording industries that are currently undergoing a rapid transition from micro- to nano-scale. The program will also result in incorporating theoretical and experimental methods of nano-technology into graduate and undergraduate university curricula.
合作研究:基于一维磁性纳米触点阵列的微波纳米电子自旋扭矩器件这项合作提案的目标是创建一个实验原型,并开发一种新的纳米电子微波设备的工作原理:基于磁波导耦合的磁性纳米触点锁相阵列的可调谐微波振荡器。该器件将在连接到铁磁自旋波波导的磁性纳米触头中利用自旋扭矩效应。该器件的工作原理是基于自旋极化直流电在自旋波波导中激发的自旋波之间的相互作用。在10到25 GHz的频率范围内,这些设备的工作频率将可以通过外部磁场和直流偏置电流进行调节。所提出的基于自旋波波导的新型准一维器件几何结构还将使我们能够显著增加单个纳米接触之间的耦合(与通常的二维几何结构相比),从而增加锁相的频带并放宽对纳米接触尺寸均匀性的限制。这种一维几何结构还将增加振荡器阵列的功率输出并减小生成线宽。新的几何结构将允许我们获得关于各个自旋-扭矩振子之间的耦合机制的新的实验信息,从而导致它们的锁相。智力优势:拟议的研究计划将导致开发一种新的可调纳米尺寸微波振荡器,具有未来微波纳米电子所需的独特性能组合:与硅基半导体电子产品兼容、可扩展到最终纳米级限制、极低的功耗以及由于没有半导体元件而具有的辐射硬度。这项研究还将促进我们对磁性纳米结构中自旋极化电流和动态磁化强度之间相互作用的物理理解。我们的目标是充分利用加州大学欧文分校的实验小组和密歇根州罗切斯特的奥克兰大学理论小组之间的协同互动优势,实现微波纳米电子学实用纳米器件技术开发的突破。更广泛的影响:拟议的研究计划将以多种方式影响我们的社会。该计划将开发的新型有源纳米微波器件对于美国在电子和磁记录技术方面的持续领先地位至关重要。一些研究生和博士后将通过参与拟议的研究接触到现代纳米科学和纳米技术的方法。建议的课程将通过参与手稿准备和会议演示来帮助我们的学生发展写作、演示和指导技能。该项目还将通过与国内外领先的研究小组的合作研究,大幅提升和拓宽学生的教育体验。该项目提供的纳米制造实践培训将为美国电子和磁记录行业培养有价值的专家,这些行业目前正经历着从微米到纳米的快速过渡。该计划还将把纳米技术的理论和实验方法纳入研究生和本科生的大学课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Krivorotov其他文献

Ilya Krivorotov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Krivorotov', 18)}}的其他基金

Energy-efficient phase-locked arrays of spin torque nano-oscillators based on current-induced torques in magnetic metals
基于磁性金属电流感应扭矩的节能锁相自旋扭矩纳米振荡器阵列
  • 批准号:
    2213690
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Terahertz Generators Based on Magnetic Materials
合作研究:基于磁性材料的新型太赫兹发生器
  • 批准号:
    1708885
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
EFRI NewLAW: Non-Reciprocal Magneto-Acoustic Waves in Chiral Magnetic Systems
EFRI NewLAW:手性磁系统中的非互易磁声波
  • 批准号:
    1641989
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Spin supercurrents in ferromagnetic and antiferromagnetic films
铁磁和反铁磁薄膜中的自旋超电流
  • 批准号:
    1610146
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Spin Torque Oscillators Based on Electric and Thermal Spin Currents in Self Assembled Ferromagnetic Nanowire Arrays
合作研究:自组装铁磁纳米线阵列中基于电和热自旋电流的自旋扭矩振荡器
  • 批准号:
    1309416
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
MWN: Magnetization Dynamics in Metallic Ferromagnetic Nanostructures
MWN:金属铁磁纳米结构的磁化动力学
  • 批准号:
    1210850
  • 财政年份:
    2012
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Signal Processing Devices Based on Spin-Torque Nano-Oscillators
合作研究:基于自旋扭矩纳米振荡器的信号处理器件
  • 批准号:
    1002358
  • 财政年份:
    2010
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
CAREER: Nonlinear Magnetization Dynamics Excited by Spin Transfer Torque
职业:自旋转移扭矩激发的非线性磁化动力学
  • 批准号:
    0748810
  • 财政年份:
    2008
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225370
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328830
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spin Transport in Nonrelatisvistically Spin-split Antiferromagnets
合作研究:非相对论自旋分裂反铁磁体中的自旋输运
  • 批准号:
    2316665
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328829
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Tailoring Electron and Spin Transport in Single Molecule Junctions
合作研究:定制单分子结中的电子和自旋输运
  • 批准号:
    2225369
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236159
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Large-Amplitude, Easy-Plane Spin-Orbit Torque Oscillators
合作研究:大振幅、简易平面自旋轨道扭矩振荡器
  • 批准号:
    2236160
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Spin Gapless Semiconductors and Effective Spin Injection Design for Spin-Orbit Logic
合作研究:FuSe:自旋无间隙半导体和自旋轨道逻辑的有效自旋注入设计
  • 批准号:
    2328828
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了