EFRI NewLAW: Non-Reciprocal Magneto-Acoustic Waves in Chiral Magnetic Systems
EFRI NewLAW:手性磁系统中的非互易磁声波
基本信息
- 批准号:1641989
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Waves are commonly used in communications and imaging. Examples include microwaves that enable operation of cell phones and acoustic waves that enable ultrasound imaging. Typically these waves can freely propagate in any direction away from their sources. Many practical applications of such waves could be improved if the waves were made to propagate in only one specific direction. For example, such unidirectional waves enable communication devices that can simultaneously send and receive signals using the same antenna ? this is called full duplex communications. One goal of this project is to create new magnetic materials, in which microwaves and ultrasound waves propagate in only one direction. Another goal is to make a new type of very compact on-chip microwave and acoustic devices called circulators that are based on these novel materials. Such circulators are the core elements making the full duplex communications possible. In the course of this project, the principal investigators will train a number of undergraduate and graduate students, including those from Historically Black Colleges and Universities, in modern materials engineering, nanofabrication, and microwave measurement techniques, which will enhance the U.S. science and engineering workforce.This project has two major goals: (i) development of chiral materials and meta-materials supporting strongly non-reciprocal spin waves and magneto-acoustic waves and (ii) demonstration of acoustic signal circulators and reconfigurable microwave circulators, which are based on the non-reciprocal waves. Two approaches to the generation of non-reciprocal waves will be employed. In the first approach, the wave non-reciprocity in magnetic films will be induced either via anti-symmetric exchange interactions by doping interfaces with heavy elements or via spin-flexoelectric interactions by applying an electric field perpendicular to the film surface. In the second approach, novel magnetic metamaterials lacking inversion symmetry will be made from arrays of ferromagnetic nano-elements. In these meta-materials, several types of non-reciprocal spin waves can be excited including spectrally protected modes and topologically protected edge states. By employing materials with strong resonant magneto-elastic coupling, the spin-wave non-reciprocity is transferred to magneto-acoustic waves. Non-reciprocal magnetic meta-materials developed under this program will be used to make and test acoustic wave circulators based on non-reciprocal, topologically protected chiral magneto-acoustic waves propagating along the meta-material edges. A reconfigurable ultra-compact microwave circulator based on spin-flexoelectric interactions in ferrimagnetic thin films will be made and tested. The direction of microwave signal propagation in this device can be rapidly controlled via external bias voltage. This research project will advance our understanding of non-reciprocal waves in magnetic meta-materials and will result in the development of a new class of ultra-compact, on-chip, non-reciprocal signal processing devices.
波通常用于通信和成像。示例包括使手机能够操作的微波和使超声成像能够实现的声波。通常,这些波可以在远离其源的任何方向上自由传播。如果使波只在一个特定的方向上传播,这种波的许多实际应用都可以得到改进。例如,这种单向波使通信设备能够使用同一天线同时发送和接收信号。这被称为全双工通信。该项目的一个目标是创造新的磁性材料,其中微波和超声波只在一个方向上传播。另一个目标是制造一种新型的非常紧凑的片上微波和声学器件,称为基于这些新材料的循环器。这种循环器是使全双工通信成为可能的核心元件。在这个项目的过程中,主要研究人员将培训一些本科生和研究生,包括那些来自历史上的黑人学院和大学,在现代材料工程,纳米纤维,和微波测量技术,这将提高美国.科学和工程劳动力.这个项目有两个主要目标:(i)开发支持强非互易自旋波和磁声波的手性材料和超材料,以及(ii)演示基于非互易波的声信号循环器和可重构微波循环器。将采用两种方法来产生非互易波。在第一种方法中,磁性薄膜中的波非互易性将通过用重元素掺杂界面的反对称交换相互作用或通过施加垂直于薄膜表面的电场的自旋-挠曲电相互作用来诱导。在第二种方法中,将由铁磁纳米元件阵列制成缺乏反转对称性的新型磁性超材料。在这些超材料中,可以激发几种类型的非互易自旋波,包括光谱保护模式和拓扑保护边缘状态。通过采用具有强磁弹共振耦合的材料,自旋波的非互易性被转换为磁声波。根据该计划开发的非互易磁性超材料将用于制造和测试基于非互易的、拓扑保护的手性磁声波的声波环行器,该手性磁声波沿沿着超材料边缘传播。一个可重构的超紧凑型微波环行器的基础上自旋挠曲电相互作用的亚铁磁薄膜将被制作和测试。该器件中微波信号的传播方向可以通过外加偏置电压快速控制。该研究项目将推进我们对磁性超材料中非互易波的理解,并将导致一类新的超紧凑,片上非互易信号处理设备的开发。
项目成果
期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconfigurable Spin-Wave Interferometer at the Nanoscale
- DOI:10.1021/acs.nanolett.1c02010
- 发表时间:2021-07-16
- 期刊:
- 影响因子:10.8
- 作者:Chen, Jilei;Wang, Hanchen;Yu, Haiming
- 通讯作者:Yu, Haiming
Experimental Demonstration of Spintronic Broadband Microwave Detectors and Their Capability for Powering Nanodevices
自旋电子宽带微波探测器及其为纳米器件供电的能力的实验演示
- DOI:10.1103/physrevapplied.11.014022
- 发表时间:2019-01-10
- 期刊:
- 影响因子:4.6
- 作者:Fang, Bin;Carpentieri, Mario;Zeng, Zhongming
- 通讯作者:Zeng, Zhongming
Spin–orbit torque driven by a planar Hall current
- DOI:10.1038/s41565-018-0282-0
- 发表时间:2017-12
- 期刊:
- 影响因子:38.3
- 作者:C. Safranski;E. Montoya;I. Krivorotov
- 通讯作者:C. Safranski;E. Montoya;I. Krivorotov
Spin–orbit torque nano-oscillator with giant magnetoresistance readout
- DOI:10.1038/s42005-020-00454-7
- 发表时间:2020-10
- 期刊:
- 影响因子:5.5
- 作者:Jen-Ru Chen;Andrew Smith;E. Montoya;J. Lu;I. Krivorotov
- 通讯作者:Jen-Ru Chen;Andrew Smith;E. Montoya;J. Lu;I. Krivorotov
Nanometer-Thick Yttrium Iron Garnet Films with Perpendicular Anisotropy and Low Damping
具有垂直各向异性和低阻尼的纳米厚钇铁石榴石薄膜
- DOI:10.1103/physrevapplied.14.014017
- 发表时间:2020-07-07
- 期刊:
- 影响因子:4.6
- 作者:Ding, Jinjun;Liu, Chuanpu;Wu, Mingzhong
- 通讯作者:Wu, Mingzhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Krivorotov其他文献
Ilya Krivorotov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Krivorotov', 18)}}的其他基金
Energy-efficient phase-locked arrays of spin torque nano-oscillators based on current-induced torques in magnetic metals
基于磁性金属电流感应扭矩的节能锁相自旋扭矩纳米振荡器阵列
- 批准号:
2213690 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Novel Terahertz Generators Based on Magnetic Materials
合作研究:基于磁性材料的新型太赫兹发生器
- 批准号:
1708885 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Spin supercurrents in ferromagnetic and antiferromagnetic films
铁磁和反铁磁薄膜中的自旋超电流
- 批准号:
1610146 - 财政年份:2016
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
Collaborative Research: Spin Torque Oscillators Based on Electric and Thermal Spin Currents in Self Assembled Ferromagnetic Nanowire Arrays
合作研究:自组装铁磁纳米线阵列中基于电和热自旋电流的自旋扭矩振荡器
- 批准号:
1309416 - 财政年份:2013
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
MWN: Magnetization Dynamics in Metallic Ferromagnetic Nanostructures
MWN:金属铁磁纳米结构的磁化动力学
- 批准号:
1210850 - 财政年份:2012
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Signal Processing Devices Based on Spin-Torque Nano-Oscillators
合作研究:基于自旋扭矩纳米振荡器的信号处理器件
- 批准号:
1002358 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
CAREER: Nonlinear Magnetization Dynamics Excited by Spin Transfer Torque
职业:自旋转移扭矩激发的非线性磁化动力学
- 批准号:
0748810 - 财政年份:2008
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
Collaborative Research: Spin-Torque Devices for Microwave Nano-Electronics Based on One-Dimensional Array of Magnetic Nano-Contacts
合作研究:基于一维磁性纳米接触阵列的微波纳米电子自旋扭矩器件
- 批准号:
0701458 - 财政年份:2007
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似海外基金
EFRI-2DARE and NewLAW Grantees Meeting Workshop, San Diego, October 17-19, 2018
EFRI-2DARE 和 NewLAW 受资助者会议研讨会,圣地亚哥,2018 年 10 月 17 日至 19 日
- 批准号:
1849079 - 财政年份:2018
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological acoustic metamaterials for programmable and high-efficiency one-way transport
EFRI NewLAW:用于可编程和高效单向传输的拓扑声学超材料
- 批准号:
1741618 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Mid-infrared topological plasmon-polaritons with 2D materials
EFRI NewLAW:采用 2D 材料的中红外拓扑等离子激元
- 批准号:
1741660 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Magnetic Field Free Magneto-optics and Chiral Plasmonics with Dirac Materials
EFRI NewLAW:采用狄拉克材料的无磁场磁光和手性等离子体
- 批准号:
1741673 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Voltage-tuned, topologically-protected magnon states for low loss microwave devices and circuits
EFRI NewLAW:低损耗微波器件和电路的电压调谐、拓扑保护磁振子态
- 批准号:
1741666 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-Reciprocal Wave Propagation Devices by Fermionic Emulation and Exceptional Point Physics
EFRI NewLAW:通过费米子仿真和异常点物理实现非互易波传播装置
- 批准号:
1741694 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
EFRI NewLAW: CMOS-Compatible Electrically Controlled Nonreciprocal Light Propagation with 2D Materials
EFRI NewLAW:采用 2D 材料的 CMOS 兼容电控非互易光传播
- 批准号:
1741693 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Non-reciprocity in Acoustic Systems with Nonlinear Hierarchical Internal Structure and Asymmetry
EFRI NewLAW:具有非线性分层内部结构和不对称性的声学系统中的非互易性
- 批准号:
1741565 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
GOALI: EFRI NewLaw: Non-reciprocal effects and Anderson localization of acoustic and elastic waves in periodic structures with broken P-symmetry of the unit cell
目标:EFRI 新定律:单胞 P 对称性破缺的周期性结构中声波和弹性波的非互易效应和安德森局域化
- 批准号:
1741677 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EFRI NewLAW: Topological Mechanical Metamaterials Science
EFRI NewLAW:拓扑机械超材料科学
- 批准号:
1741685 - 财政年份:2017
- 资助金额:
$ 200万 - 项目类别:
Standard Grant