Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
基本信息
- 批准号:1710481
- 负责人:
- 金额:$ 10.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry is a mathematical framework for the study of classical and quantum mechanics. It centers around questions about the structures and symmetries of a symplectic manifold--an even-dimensional space that locally looks like the phase space containing the position and momentum of a moving particle. Modern physics has led to the discoveries of many important and sophisticated invariants of symplectic manifolds, and has predicted a number of deep connections to different fields of mathematics. Current definitions and approaches to these invariants are based on the analysis of a special kind of mapping of a surface to a symplectic manifold, known as the theory of holomorphic curves. The primary goal of the project is to develop an alternative approach to some of these invariants, which is more accessible and which will form the foundations of effective calculations. The approach is based on the microlocal sheaf theory, which was invented as an algebraic and topological method to study differential equations. The project will have many applications in the field of representation theory, a rich subject focusing on the study of symmetries appearing in mathematics and physics. The PI will also continue to organize seminars on related topics, disseminate her results through academic events, and provide research opportunities for undergraduate students.More specifically, the PI will use microlocal sheaf theory to quantize Lagrangian submanifolds in an exact symplectic manifold, and will give the definition of a microlocal sheaf category of a symplectic manifold, which is expected to be equivalent to the important symplectic invariant, known as the Fukaya category. The approach is purely topological, and it allows the coefficient ring to be a ring spectrum, which opens up interesting connections to stable homotopy theory. The PI will develop a parallel story in the complex setting of holomorphic Lagrangians in an exact holomorphic symplectic manifold, which exhibits new and richer structures and which will have important applications in geometric representation theory. The PI will use this to quantize holomorphic Lagrangians in symplectic resolutions, a class of holomorphic symplectic manifolds in the center of modern representation theory, with the goal of understanding the mysterious phenomena of symplectic duality. Other applications to representation theory involve calculations in the Hecke category using sheaf quantizations of the braid group action as symplectomorphisms and a proposal to realize the nonabelian Hodge theory using microlocal perverse sheaves.
辛几何是研究经典力学和量子力学的数学框架。它的中心是关于辛流形的结构和对称性的问题-一个偶数维空间,局部看起来像包含运动粒子的位置和动量的相空间。 现代物理学已经发现了辛流形的许多重要和复杂的不变量,并预测了许多与不同数学领域的深刻联系。目前对这些不变量的定义和方法是基于对曲面到辛流形的一种特殊映射的分析,称为全纯曲线理论。该项目的主要目标是开发一种替代方法来解决其中一些不变量,这种方法更容易获得,并将成为有效计算的基础。该方法是基于微局部层理论,这是发明作为一种代数和拓扑方法来研究微分方程。该项目将在表征理论领域有许多应用,这是一个丰富的主题,专注于研究数学和物理中出现的对称性。该研究所还将继续组织相关主题的研讨会,通过学术活动传播她的成果,并为本科生提供研究机会。更具体地说,该研究所将使用微局部层理论来构造精确辛流形中的拉格朗日子流形,并将给出辛流形的微局部层范畴的定义,期望它等价于重要的辛不变量,称为福谷范畴。这种方法是纯拓扑的,它允许系数环是环谱,这开辟了与稳定同伦理论的有趣联系。PI将开发一个平行的故事,在复杂的设置全纯拉格朗日在一个精确的全纯辛流形,表现出新的和更丰富的结构,这将有重要的应用在几何表示理论。PI将使用它来计算辛解析中的全纯拉格朗日,这是现代表示论中心的一类全纯辛流形,目的是理解辛对偶的神秘现象。表示论的其他应用包括在Hecke范畴中使用辫子群作用的层量子化作为辛同胚的计算,以及使用微局部反常层实现非交换霍奇理论的建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Jin其他文献
ZIF-derived ZnO/Sb composite scaffolded on carbon framework for Ni-Zn batteries
用于 Ni-Zn 电池的碳骨架上的 ZIF 衍生的 ZnO/Sb 复合材料
- DOI:
10.1016/j.jcis.2020.06.120 - 发表时间:
2020 - 期刊:
- 影响因子:9.9
- 作者:
Weiyi Zhao;Ziqiang Liu;Chenglin Zhong;Zihan Shen;Xin Jin;Huigang Zhang - 通讯作者:
Huigang Zhang
Spatial and Momentum Mapping Modes for Velocity Map Imaging Spectrometer
速度图成像光谱仪的空间和动量映射模式
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yunfei Feng;B. Ding;Ruichang Wu;Xin Jin;Kefei Wu;Jianfeng Liao;Jian Huang;Xiao - 通讯作者:
Xiao
New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC
基于碘化咪唑鎓接枝聚硅氧烷的新型 DSSC 微孔聚合物电解质
- DOI:
10.1155/2011/405738 - 发表时间:
2011 - 期刊:
- 影响因子:3.2
- 作者:
Yan Yang;J. Tao;Xin Jin;Qi Qin - 通讯作者:
Qi Qin
Synthesis and characterization of poly(1-vinyl-3-propylimidazolium) iodide for quasi-solid polymer electrolyte in dye-sensitized solar cells
染料敏化太阳能电池准固体聚合物电解质聚(1-乙烯基-3-丙基咪唑)碘化物的合成与表征
- DOI:
10.1002/app.32425 - 发表时间:
2010 - 期刊:
- 影响因子:3
- 作者:
Xin Jin;J. Tao;Yan Yang - 通讯作者:
Yan Yang
Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids
混合纳米流体选择性吸收太阳能的实验研究
- DOI:
10.3390/en14238186 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.2
- 作者:
Xin Jin;Guiping Lin;Haichuan Jin;Zunru Fu;Haoyang Sun - 通讯作者:
Haoyang Sun
Xin Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Jin', 18)}}的其他基金
CRII: NeTS: Scaling Distributed Storage with Programmable Switches
CRII:NeTS:使用可编程交换机扩展分布式存储
- 批准号:
1755646 - 财政年份:2018
- 资助金额:
$ 10.71万 - 项目类别:
Standard Grant
Microlocal Sheaves, Symplectic Geometry and Applications in Representation Theory
微局域滑轮、辛几何及其在表示论中的应用
- 批准号:
1854232 - 财政年份:2018
- 资助金额:
$ 10.71万 - 项目类别:
Standard Grant
相似海外基金
Perverse sheaves and schobers
反常的滑轮和 schobers
- 批准号:
23K20205 - 财政年份:2024
- 资助金额:
$ 10.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
$ 10.71万 - 项目类别:
Continuing Grant
Knot Homology and Moduli of Sheaves
绳轮的结同源性和模量
- 批准号:
2200798 - 财政年份:2022
- 资助金额:
$ 10.71万 - 项目类别:
Continuing Grant
Representation theory of affine Lie algebras and enumerative geometry of sheaves on toric surfaces and threefolds
仿射李代数表示论与复曲面和三重滑轮的枚举几何
- 批准号:
567867-2022 - 财政年份:2022
- 资助金额:
$ 10.71万 - 项目类别:
Postdoctoral Fellowships
Sheaf Representations of Algebras and Logic of Sheaves
代数的层表示和层逻辑
- 批准号:
22K13950 - 财政年份:2022
- 资助金额:
$ 10.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 10.71万 - 项目类别:
Standard Grant
Moduli spaces of sheaves on Hermitian manifolds
厄米流形上滑轮的模空间
- 批准号:
RGPIN-2018-04379 - 财政年份:2022
- 资助金额:
$ 10.71万 - 项目类别:
Discovery Grants Program - Individual
Expanders, Sheaves on Graphs, and Applications
扩展器、图表上的滑轮和应用程序
- 批准号:
RGPIN-2017-04463 - 财政年份:2021
- 资助金额:
$ 10.71万 - 项目类别:
Discovery Grants Program - Individual
Sheaves, Representations, and Dualities
滑轮、表示和对偶性
- 批准号:
2101507 - 财政年份:2021
- 资助金额:
$ 10.71万 - 项目类别:
Continuing Grant
Moduli Spaces and Applications of Constructible Sheaves
可构造滑轮的模空间和应用
- 批准号:
2104087 - 财政年份:2021
- 资助金额:
$ 10.71万 - 项目类别:
Continuing Grant