Activity Microscopy: From single filament to bulk mechanics in biopolymer networks

活动显微镜:从单丝到生物聚合物网络中的体力学

基本信息

  • 批准号:
    1710646
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical summaryA major part of our body consists of proteins that form fiber networks. These networks fulfill a multitude of essential functions, such as providing elasticity to our skin and preventing it from overstretching. Understanding how these macroscopic properties arise from the networks' individual components is thus crucial to our understanding of basic physiological processes, our ability to treat diseases, and the future design of novel materials that mimic biological tissue. Such an understanding remains elusive, however, due to a lack of experimental techniques that can resolve fibrous networks with single filament resolution, while also quantifying their contribution to the large-scale network. The proposed research aims to establish a microscopy technique that can resolve the contribution of each filament to the overall large-scale properties of the network. It will be applied to collagen networks with and without cells, and to tissue samples from bioprosthetic heart valves.The proposed research is expected to provide material researchers with a better understanding of micromechanical processes in fibrous biopolymer networks. This work could result in the development of novel materials for guiding cell growth, artificial skin and organs, and new methods for drug delivery that rely on the behavior of biological tissue under mechanical stress. Graduate and undergraduate students will be trained in an interdisciplinary environment on a unique state-of-the-art instrument, and female high-school students will participate in research as part of an outreach program. These high-school students will furthermore benefit from direct contact with other researchers at the university through lab visits and research presentations. Technical summaryThe development and application of the novel optical microscopy technique is expected to result in the visualization and quantification of the transition from individual fiber to bulk properties in biopolymer networks. Assumptions made in theories about the micromechanical behavior of this important class of materials will be tested. Because the method is diffraction limited, networks with mesh sizes larger than the dimensions of the focal spot will be chosen. Networks will be imaged and the stress distribution along filaments will be quantified and visualized. The fiber-precise resolution will be used to study the force generation of cells in collagen gels. Fibrous tissue samples of bioprosthetic heart valves will be tested for signs of degeneration. The more detailed understanding of the micromechanical behavior displayed by biopolymer networks opens a new opportunity to control cell growth and tissue formation by rationally designed biocompatible and biodegradable materials. The novel microscopy technique will enable the study of force generation of cells in fibrous networks with single filament resolution, as well as the observation of their force-mediated communication. New insight into mechanical signaling between cells in the extracellular matrix is expected, as well as into the degeneration of bioprosthetic heart valve tissue. Graduate and undergraduate students will be trained in an interdisciplinary environment on state-of-the-art instrumentation in a field that directly benefits national health and prosperity.
我们身体的主要部分是由构成纤维网络的蛋白质组成的。这些网络完成了许多基本功能,比如为我们的皮肤提供弹性,防止它过度拉伸。因此,了解这些宏观特性是如何从网络的各个组成部分中产生的,对于我们理解基本生理过程、治疗疾病的能力以及未来设计模仿生物组织的新型材料至关重要。然而,这种理解仍然是难以捉摸的,因为缺乏实验技术,可以用单丝分辨率解决纤维网络,同时也量化它们对大规模网络的贡献。提出的研究旨在建立一种显微镜技术,可以解决每个细丝对网络整体大尺度特性的贡献。它将应用于有或没有细胞的胶原蛋白网络,以及生物人工心脏瓣膜的组织样本。提出的研究有望为材料研究人员提供更好地理解纤维生物聚合物网络中的微机械过程。这项工作可能会导致新材料的发展,用于指导细胞生长,人造皮肤和器官,以及依赖于机械应力下生物组织行为的药物递送新方法。研究生和本科生将在一个跨学科的环境中接受一种独特的最先进的仪器的培训,女高中生将参与研究,作为推广计划的一部分。这些高中生还将通过参观实验室和研究报告与大学的其他研究人员直接接触,从而受益。新型光学显微镜技术的发展和应用有望实现生物聚合物网络中从单个纤维到整体特性转变的可视化和量化。关于这类重要材料的微观力学行为的理论假设将得到检验。由于该方法有衍射限制,因此将选择比焦点尺寸大的网格。网络将被成像,沿细丝的应力分布将被量化和可视化。纤维精确分辨率将用于研究胶原蛋白凝胶中细胞的力生成。生物假体心脏瓣膜的纤维组织样本将被测试是否有退化的迹象。更详细地了解生物聚合物网络所表现出的微力学行为,为通过合理设计生物相容性和可生物降解材料来控制细胞生长和组织形成提供了新的机会。这种新的显微镜技术将使研究单丝分辨率纤维网络中细胞的力产生以及观察它们的力介导通信成为可能。对细胞外基质中细胞间的机械信号传导以及生物人工心脏瓣膜组织的退化有了新的认识。研究生和本科生将在一个跨学科的环境中学习最先进的仪器,这一领域直接有利于国家的健康和繁荣。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ernst-Ludwig Florin其他文献

Three-Dimensional Thermal Noise Imaging of Collagen Networks
  • DOI:
    10.1016/j.bpj.2012.11.3692
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Tobias F. Bartsch;Martin D. Kochanczyk;Janina Lange;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin
Direct Observation of Intermediate States in Membrane Fusion by Photonic Force Microscopy
  • DOI:
    10.1016/j.bpj.2009.12.3696
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrea Keidel;Tobias F. Bartsch;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin
Measurement Of The Non-conservative Force Generated By Optical Tweezers
  • DOI:
    10.1016/j.bpj.2008.12.1430
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pinyu Wu;Rongxin Huang;Christian Tischer;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin

Ernst-Ludwig Florin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ernst-Ludwig Florin', 18)}}的其他基金

Control of Molecular Fiber Bundle Mechanics and Dynamics by Bundle Architecture
通过束结构控制分子纤维束力学和动力学
  • 批准号:
    1728659
  • 财政年份:
    2017
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Seeing is believing: Submicroscopic visualization of semiflexible polymer networks and extraction of structural and mechanical parameters
眼见为实:半柔性聚合物网络的亚显微可视化以及结构和机械参数的提取
  • 批准号:
    1411262
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Controlling the Mechanical Properties of Fiber Bundles through their Molecular Architecture
通过分子结构控制纤维束的机械性能
  • 批准号:
    1031106
  • 财政年份:
    2010
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Relaxation dynamics in biological fiber bundles
生物纤维束的弛豫动力学
  • 批准号:
    0728166
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Force Distributions in Biopolymer Networks
生物聚合物网络中的力分布
  • 批准号:
    0647144
  • 财政年份:
    2007
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Thermal Noise Microscope for Nanoscale Imaging of the Plasma Membrane
用于质膜纳米级成像的热噪声显微镜
  • 批准号:
    0552094
  • 财政年份:
    2006
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant

相似海外基金

Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
  • 批准号:
    LE240100086
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Development of single-protein-molecule isotropic microscopy
单蛋白质分子各向同性显微镜的发展
  • 批准号:
    24K18359
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unlocking the potential of single-photon wide-field microscopy
释放单光子宽视场显微镜的潜力
  • 批准号:
    EP/Y022491/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Developing single-photon super-resolution microscopy
开发单光子超分辨率显微镜
  • 批准号:
    EP/Y023137/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
High-throughput Phenotyping of iPSC-derived Airway Epithelium by Multiscale Machine Learning Microscopy
通过多尺度机器学习显微镜对 iPSC 衍生的气道上皮进行高通量表型分析
  • 批准号:
    10659397
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Rapid, simple, and ultrasensitive quantitation of KRAS ctDNA at the point of care using CRISPR/Cas amplification and digital resolution biosensor microscopy
使用 CRISPR/Cas 扩增和数字分辨率生物传感器显微镜在护理点快速、简单且超灵敏地定量 KRAS ctDNA
  • 批准号:
    10709211
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
CIF:Small:Developing Theory of Spatiotemporal-Resolution and Spatiotemporal-Localization Algorithms for Single-Molecule Localization Microscopy
CIF:Small:发展单分子定位显微镜的时空分辨率和时空定位算法理论
  • 批准号:
    2313072
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Scanning Electrochemical Microscopy of Single-Crystal Hydrogen Electrocatalysis
单晶氢电催化的扫描电化学显微镜
  • 批准号:
    2304922
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Monitor single-cell dynamics using optically computed phase microscopy in correlation with fluorescence characterization of intracellular properties
使用光学计算相位显微镜监测单细胞动力学与细胞内特性的荧光表征相关
  • 批准号:
    10589414
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
Flow Cytometry and Confocal Microscopy Shared Resource
流式细胞术和共焦显微镜共享资源
  • 批准号:
    10625766
  • 财政年份:
    2023
  • 资助金额:
    $ 42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了