Control of Molecular Fiber Bundle Mechanics and Dynamics by Bundle Architecture

通过束结构控制分子纤维束力学和动力学

基本信息

  • 批准号:
    1728659
  • 负责人:
  • 金额:
    $ 35.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Biological fiber bundles are widely spread in nature. They are necessary for our senses of hearing and balance, facilitate wound healing, and enable cells to divide and migrate, to name just a few examples. Nature utilizes fiber bundles for their fast assembly and disassembly and rapid control over mechanical properties through changes in molecular interactions. The understanding of biological fiber bundles and their rich mechanical and dynamical properties is crucial to biomechanics and mechanical biology. This understanding, however, has been hampered by a lack of suitable microscopic techniques for simultaneously observing bundle architecture and dynamics. The research addresses this problem by combining high-precision position measurements, optical response measurements and manipulation of a prototype fiber bundle structure that is widely used in nature. The overall goal of this research is to determine the link between the molecular architecture of biological fiber bundles and their macroscopic mechanical properties. This understanding is essential for biomedical research and for the design of novel smart materials that self-assemble and exhibit predictable properties. Students will be exposed to a rich interdisciplinary environment that includes theoretical physics, physical chemistry, molecular biology and material science, thereby training them to develop an interdisciplinary approach towards research. Students will participate in an international collaboration, and the development of state of the art instrumentation will enhance the intentional competitiveness of the research. Female high school students will also participate in the research as part of the Alice in Wonderland outreach project.The project will advance our fundamental understanding of the link between biological fiber bundle architecture and macroscopic mechanics and dynamics. The findings could potentially have wide spread applications to other biological fiber bundle systems and manmade systems. Microtubules will be used as a model system. These particular fiber bundles consist of parallel protofilaments that arrange themselves to form closed tubes and other bundle structures. They are ideal for comprehensive study of bundle mechanics and dynamics because the weak interactions between protofilaments allow them to easily adapt various structures. The mechanical and dynamical properties or microtubules will be measured using their naturally occurring thermal shape fluctuations with a novel high-bandwidth position detection scheme. The architecture will be determined from optical scattering signals. The experiments test the hypothesis that bundle mechanics and dynamics can be described by the recently developed wormlike bundle model over a wide range of parameters such as filament number, strength of crosslinking, and the molecular state of the subunits. The wormlike bundle model provides a direct link between molecular and macroscopic properties and, if confirmed, will aid the rational design and assembly of smart fiber bundle-based materials for technical applications and biomedical research.
生物纤维束在自然界中广泛分布。它们对我们的听觉和平衡感是必要的,促进伤口愈合,使细胞能够分裂和迁移,仅举几个例子。大自然利用纤维束进行快速组装和拆卸,并通过分子相互作用的变化快速控制机械性能。了解生物纤维束及其丰富的力学和动力学性质对生物力学和机械生物学至关重要。然而,这种理解受到了阻碍,缺乏合适的显微镜技术,同时观察束结构和动态。该研究通过结合高精度位置测量,光学响应测量和自然界中广泛使用的原型纤维束结构的操纵来解决这个问题。 本研究的总体目标是确定生物纤维束的分子结构与其宏观力学性能之间的联系。这种理解对于生物医学研究和设计自组装并表现出可预测特性的新型智能材料至关重要。学生将接触到丰富的跨学科环境,包括理论物理,物理化学,分子生物学和材料科学,从而培养他们发展跨学科的研究方法。学生将参与国际合作,最先进的仪器的发展将提高研究的竞争力。女高中生也将参与研究,作为爱丽丝梦游仙境外展项目的一部分。该项目将促进我们对生物纤维束结构与宏观力学和动力学之间联系的基本理解。这些发现可能会广泛应用于其他生物纤维束系统和人造系统。微管将被用作模型系统。这些特殊的纤维束由平行的原丝组成,原丝排列成封闭的管子和其他束结构。它们是研究纤维束力学和动力学的理想工具,因为原丝之间的弱相互作用使它们能够很容易地适应各种结构。微管的机械和动力学特性将使用其自然发生的热形状波动与一种新的高带宽位置检测方案进行测量。该体系结构将由光散射信号确定。实验测试的假设,束力学和动力学可以描述最近开发的蠕虫状束模型在很宽的参数范围内,如长丝数,交联强度,和亚基的分子状态。蠕虫状束模型提供了分子和宏观性质之间的直接联系,如果得到证实,将有助于合理设计和组装智能纤维织物为基础的材料的技术应用和生物医学研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ernst-Ludwig Florin其他文献

Three-Dimensional Thermal Noise Imaging of Collagen Networks
  • DOI:
    10.1016/j.bpj.2012.11.3692
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Tobias F. Bartsch;Martin D. Kochanczyk;Janina Lange;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin
Direct Observation of Intermediate States in Membrane Fusion by Photonic Force Microscopy
  • DOI:
    10.1016/j.bpj.2009.12.3696
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrea Keidel;Tobias F. Bartsch;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin
Measurement Of The Non-conservative Force Generated By Optical Tweezers
  • DOI:
    10.1016/j.bpj.2008.12.1430
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pinyu Wu;Rongxin Huang;Christian Tischer;Ernst-Ludwig Florin
  • 通讯作者:
    Ernst-Ludwig Florin

Ernst-Ludwig Florin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ernst-Ludwig Florin', 18)}}的其他基金

Activity Microscopy: From single filament to bulk mechanics in biopolymer networks
活动显微镜:从单丝到生物聚合物网络中的体力学
  • 批准号:
    1710646
  • 财政年份:
    2017
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
Seeing is believing: Submicroscopic visualization of semiflexible polymer networks and extraction of structural and mechanical parameters
眼见为实:半柔性聚合物网络的亚显微可视化以及结构和机械参数的提取
  • 批准号:
    1411262
  • 财政年份:
    2014
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
Controlling the Mechanical Properties of Fiber Bundles through their Molecular Architecture
通过分子结构控制纤维束的机械性能
  • 批准号:
    1031106
  • 财政年份:
    2010
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Standard Grant
Relaxation dynamics in biological fiber bundles
生物纤维束的弛豫动力学
  • 批准号:
    0728166
  • 财政年份:
    2007
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
Force Distributions in Biopolymer Networks
生物聚合物网络中的力分布
  • 批准号:
    0647144
  • 财政年份:
    2007
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant
Thermal Noise Microscope for Nanoscale Imaging of the Plasma Membrane
用于质膜纳米级成像的热噪声显微镜
  • 批准号:
    0552094
  • 财政年份:
    2006
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Continuing Grant

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Molecular and Mechanical Investigations to Define Collagen and Elastic Fiber Homeostasis in Cervical Remodeling During a Term and Preterm Pregnancy
定义足月和早产期间宫颈重塑中胶原蛋白和弹性纤维稳态的分子和力学研究
  • 批准号:
    10752526
  • 财政年份:
    2023
  • 资助金额:
    $ 35.55万
  • 项目类别:
The molecular basis of Orsay virus entry mediated by the CP-delta head fiber
CP-delta头纤维介导奥赛病毒进入的分子基础
  • 批准号:
    10622529
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
Molecular mechanisms of elastic fiber assembly and regeneration
弹性纤维组装和再生的分子机制
  • 批准号:
    22H02836
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The molecular basis of Orsay virus entry mediated by the CP-delta head fiber
CP-delta头纤维介导奥赛病毒进入的分子基础
  • 批准号:
    10511348
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
  • 批准号:
    10536382
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
Molecular mechanisms of elastic fiber formation
弹性纤维形成的分子机制
  • 批准号:
    573616-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
    University Undergraduate Student Research Awards
Structural and Molecular Mechanisms of Stress Fiber Repair
应力纤维修复的结构和分子机制
  • 批准号:
    10707029
  • 财政年份:
    2022
  • 资助金额:
    $ 35.55万
  • 项目类别:
Molecular mechanisms of elastic fiber formation
弹性纤维形成的分子机制
  • 批准号:
    RGPIN-2016-06278
  • 财政年份:
    2021
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular mechanisms of elastic fiber formation
弹性纤维形成的分子机制
  • 批准号:
    RGPIN-2016-06278
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Discovery Grants Program - Individual
Imaging myosin-driven stress fiber contraction with molecular resolution by high-speed AFM
通过高速 AFM 以分子分辨率对肌球蛋白驱动的应力纤维收缩进行成像
  • 批准号:
    20H03218
  • 财政年份:
    2020
  • 资助金额:
    $ 35.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了