A Patient-Centric Approach to Advance Functional Precision Oncology

以患者为中心的方法推进功能性精准肿瘤学

基本信息

  • 批准号:
    10721205
  • 负责人:
  • 金额:
    $ 109.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-22 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The development of drug resistance is a major cause of cancer treatment failure and mortality. Although much is known about the mechanisms by which tumor cells can become resistant to a given drug, translating this into effective therapeutic solutions remains an unmet clinical need. Here we propose to pioneer the use of patient derived tumor organoids (PDTOs) as a platform to identify and validate novel targets and effective drugs to overcome drug resistance in ovarian cancer, pancreatic cancer, and other tumor types. In our preliminary studies, we show that PDTOs genetically and phenotypically match the tumor from which they were derived and can be used to study the phenotypic consequences of tumor heterogeneity, tumor evolution, and drug resistance. Using a Clinical Laboratory Improvement Amendments (CLIA) approved high complexity assay, we show that PDTO drug sensitivities are highly concordant with known genetic biomarkers, retrospective treatment history and prospective patient responses. Tumor organoids derived from patients who developed in situ drug resistance demonstrate ex vivo resistance to those same drugs but also demonstrate sensitivity to other alternative oncology drugs. Additional preliminary studies show stable disease or tumor regression in patients treated with drugs identified from organoid drug screens. Here, we propose to combine drug screening and molecular profiling of PDTOs derived from a given patient from different anatomic tumor sites and before and after therapy to elucidate the mechanistic basis for drug sensitivity or resistance and to identify novel targets and effective drugs to treat metastatic, drug resistant cancers. Accompanying computational prediction models that integrate large public datasets as well as innovative methods of mechanistic target validation including CRISPR, targeted protein degradation technologies, and epigenetic profiling, will be used to prioritize and advance targets and associated biomarkers with greatest clinical potential. The rationale behind our approach is that identifying targets and effective drugs directly in patient derived samples with known clinical history and outcomes will significantly enhance translation of our findings. This proposal is significant because it will demonstrate the utility of PDTOs as both a research tool for target discovery and validation but also as a clinically useful platform to guide functional precision medicine. The findings and methods developed can be readily applied to other cancer types and clinical challenges, will accelerate preclinical drug and drug target development, and will translate to clinical studies. The models, approaches, and expected outcomes of this proposal are highly responsive to the requirements of PAR-21-274.
项目摘要/摘要 耐药性的发展是癌症治疗失败和死亡的主要原因。虽然 关于肿瘤细胞对给定药物产生耐药性的机制, 将其转化为有效的治疗解决方案仍然是未满足的临床需求。在这里,我们建议率先使用 患者来源的肿瘤类器官(PDTO)作为一个平台,以确定和验证新的目标和有效的 卵巢癌、胰腺癌和其他类型肿瘤的耐药性药物。在我们 初步研究表明,PDTO在遗传和表型上与肿瘤相匹配, 衍生并可用于研究肿瘤异质性,肿瘤 进化和抗药性。使用批准的临床实验室改进修正案(CLIA) 高复杂性试验,我们表明PDTO药物敏感性与已知的遗传学高度一致, 生物标志物、回顾性治疗史和前瞻性患者反应。肿瘤类器官来源 来自产生原位耐药性的患者,其表现出对这些相同药物的离体耐药性, 也显示出对其他替代肿瘤药物的敏感性。额外的初步研究显示稳定 用从类器官药物筛选鉴定的药物治疗的患者的疾病或肿瘤消退。这里我们 建议将联合收割机药物筛选和源自给定患者的PDTO的分子谱分析结合起来, 不同的解剖肿瘤部位和治疗前后,以阐明药物的机制基础 敏感性或耐药性,并确定新的目标和有效的药物,以治疗转移性,耐药性 癌的伴随而来的计算预测模型整合了大型公共数据集, 创新的机制靶向验证方法,包括CRISPR、靶向蛋白质降解 技术和表观遗传分析,将用于优先考虑和推进目标和相关的 具有最大临床潜力的生物标志物。我们的做法背后的基本原理是,确定目标和 直接在具有已知临床病史和结果的患者来源的样品中使用有效药物将显著 加强对我们调查结果的翻译。这一建议意义重大,因为它将证明 PDTO既是靶点发现和验证的研究工具,也是临床有用的平台, 引导功能性精准医疗。研究结果和开发的方法可以很容易地应用于其他 癌症类型和临床挑战,将加速临床前药物和药物靶点的开发, 转化为临床研究。该提案的模式、方法和预期成果非常重要, 符合PAR-21-274的要求。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHRISTOPHER J KEMP其他文献

CHRISTOPHER J KEMP的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHRISTOPHER J KEMP', 18)}}的其他基金

Mechanisms of Pip4k2c and Pip5k1b dependencies in Ras driven squamous cell carcinoma
Ras 驱动的鳞状细胞癌中 Pip4k2c 和 Pip5k1b 依赖性的机制
  • 批准号:
    10667117
  • 财政年份:
    2023
  • 资助金额:
    $ 109.88万
  • 项目类别:
Personalized cancer models to discover and develop new therapeutic targets.
个性化癌症模型以发现和开发新的治疗靶点。
  • 批准号:
    10228567
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
An Academic-Industry Partnership to Advance Functional Genomics for Personalized Oncology.
学术与行业合作,推进个性化肿瘤学的功能基因组学。
  • 批准号:
    10295144
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
Personalized cancer models to discover and develop new therapeutic targets.
个性化癌症模型以发现和开发新的治疗靶点。
  • 批准号:
    10602920
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
Personalized cancer models to discover and develop new therapeutic targets.
个性化癌症模型以发现和开发新的治疗靶点。
  • 批准号:
    9767101
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
An Academic-Industry Partnership to Advance Functional Genomics for Personalized Oncology.
学术与行业合作,推进个性化肿瘤学的功能基因组学。
  • 批准号:
    10601428
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
An Academic-Industry Partnership to Advance Functional Genomics for Personalized Oncology.
学术与行业合作,推进个性化肿瘤学的功能基因组学。
  • 批准号:
    10049232
  • 财政年份:
    2017
  • 资助金额:
    $ 109.88万
  • 项目类别:
An integrated computational and functional genomics discovery engine for preclini
用于临床前的集成计算和功能基因组学发现引擎
  • 批准号:
    8495704
  • 财政年份:
    2013
  • 资助金额:
    $ 109.88万
  • 项目类别:
An integrated computational and functional genomics discovery engine for preclini
用于临床前的集成计算和功能基因组学发现引擎
  • 批准号:
    8685205
  • 财政年份:
    2013
  • 资助金额:
    $ 109.88万
  • 项目类别:
Mouse Models of Tumor Progression and Therapy Response
肿瘤进展和治疗反应的小鼠模型
  • 批准号:
    6700274
  • 财政年份:
    2003
  • 资助金额:
    $ 109.88万
  • 项目类别:

相似海外基金

3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
  • 批准号:
    10556192
  • 财政年份:
    2023
  • 资助金额:
    $ 109.88万
  • 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
  • 批准号:
    10315227
  • 财政年份:
    2021
  • 资助金额:
    $ 109.88万
  • 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
  • 批准号:
    443988
  • 财政年份:
    2021
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
  • 批准号:
    20K09011
  • 财政年份:
    2020
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
  • 批准号:
    19K09130
  • 财政年份:
    2019
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
  • 批准号:
    19K18225
  • 财政年份:
    2019
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
  • 批准号:
    18K16337
  • 财政年份:
    2018
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
  • 批准号:
    10005254
  • 财政年份:
    2018
  • 资助金额:
    $ 109.88万
  • 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
  • 批准号:
    9763320
  • 财政年份:
    2018
  • 资助金额:
    $ 109.88万
  • 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
  • 批准号:
    18K07341
  • 财政年份:
    2018
  • 资助金额:
    $ 109.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了