Collaborative Research: SHF: Small: Rethinking Performance Variation for Emerging Applications - An Application-centric and Cross-layer Approach
协作研究:SHF:小型:重新思考新兴应用程序的性能变化 - 以应用程序为中心的跨层方法
基本信息
- 批准号:2134202
- 负责人:
- 金额:$ 19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-performance computing (HPC) is moving rapidly to the unparalleled level of exaflops in 2021, when the first exascale systems will be ready for science production. Despite the peak performance obtained by simplistic benchmarks during the maintenance window when no other users are allowed to access the system, applications routinely suffer from performance variations as a result of intra- or inter-application interference over storage and network. The consequence is the low system utilization and prolonged time to insights for applications. To address this challenge, this project aims to develop new methods in memory and input/output (I/O) that can significantly reduce the performance variation for large scientific applications. This project provides integrated research and education activities to nurture next-generation computer researchers and engineers in the area of HPC, particularly for those from under-represented groups, to strengthen the U.S. competitiveness in computational science and engineering. This project aims to address the performance variation issue on HPC systems using a novel application-centric approach across the system stack. To address increasing resource contention, a selective hint-sharing scheme is designed to reduce the overall performance variation, and a cluster-partition technique is developed to regulate the scale of hint sharing. In addition, a feedback mechanism is incorporated to adjust the hint traffic according to the degree of performance-variation reduction. Based upon memory-access similarity, memory pages or work nodes sharing high similarity are grouped together to optimize the memory-system performance. Furthermore, a rule-based I/O re-routing scheme, where I/O traffic is re-routed based upon not only the interference profile, but also the requirements of downstream data analytics. In particular, an error-bounded coarsening technique that reacts to performance variation by adjusting the fidelity of an HPC application is explored. The integrated research activities in this project will significantly improve the understanding and methods in managing performance variations for large computational science and engineering applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高性能计算(HPC)正在迅速发展,到2021年将达到无与伦比的exaflops水平,届时第一个exascale系统将为科学生产做好准备。尽管在不允许其他用户访问系统的维护窗口期间通过简单的基准测试获得了峰值性能,但由于存储和网络上的应用程序内或应用程序间干扰,应用程序通常会遭受性能变化。其结果是系统利用率低,应用程序的洞察时间延长。为了应对这一挑战,该项目旨在开发内存和输入/输出(I/O)的新方法,可以显着减少大型科学应用程序的性能变化。该项目提供综合研究和教育活动,以培养HPC领域的下一代计算机研究人员和工程师,特别是那些来自代表性不足的群体,以加强美国在计算科学和工程方面的竞争力。该项目旨在解决HPC系统上的性能变化问题,使用一种新的以应用程序为中心的方法在整个系统堆栈。为了解决日益增加的资源竞争,一个选择性的提示共享方案的设计,以减少整体性能的变化,和集群分区技术的发展,以调节提示共享的规模。此外,一个反馈机制被纳入调整提示流量根据性能变化的减少程度。基于存储器访问相似性,共享高相似性的存储器页面或工作节点被分组在一起以优化存储器系统性能。此外,基于规则的I/O重新路由方案,其中I/O流量不仅基于干扰简档而且基于下游数据分析的要求来重新路由。特别是,错误有界的粗化技术,通过调整HPC应用程序的保真度的性能变化的反应进行了探讨。该项目中的综合研究活动将显著提高对大型计算科学和工程应用的性能变化管理的理解和方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Locality-based transfer learning on compression autoencoder for efficient scientific data lossy compression
- DOI:10.1016/j.jnca.2022.103452
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Nan Wang;Tong Liu;Jinzhen Wang;Qing Liu;Shakeel Alibhai;Xubin He
- 通讯作者:Nan Wang;Tong Liu;Jinzhen Wang;Qing Liu;Shakeel Alibhai;Xubin He
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Liu其他文献
Control Performance Characterization and Monitoring Scheme for Power Converters in Weak Grids
弱电网中功率变换器的控制性能表征和监测方案
- DOI:
10.1109/ojpel.2023.3319369 - 发表时间:
2023 - 期刊:
- 影响因子:5.8
- 作者:
Jiachen Wang;Qing Liu;Xiangchen Zeng;Weijian Han;Zhen Xin - 通讯作者:
Zhen Xin
A Diversity-Feedback-Regulated Particle Swarm Optimization for Coverage Enhancing Problem in Directional Sensor Network
定向传感器网络中覆盖增强问题的分集反馈调节粒子群优化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Meng Tian;Qing Liu;Yaling Lu;Junliang Yao - 通讯作者:
Junliang Yao
Oncology and functional prognosis are both vital in the surgical treatment of RGCTs around the knee joint.
肿瘤学和功能预后对于膝关节周围 RGCT 的手术治疗至关重要。
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Qing Liu;Hongbo He;Zenghui Hao;Yu;Can Zhang;W. Luo - 通讯作者:
W. Luo
The 3D Ni(II)/Cu(II) supermolecular frameworks based on pyridylamine and fumarate co-ligands containing a trinodal (4,5,6)-connected network and a (H2O)16 water cluster
基于吡啶胺和富马酸盐共配体的 3D Ni(II)/Cu(II) 超分子框架,包含三节 (4,5,6) 连接网络和 (H2O)16 水簇
- DOI:
- 发表时间:
- 期刊:
- 影响因子:5.4
- 作者:
Yifan Kang;Qing Liu;Wenting Yin;Wentao Zhang;Ping Liu - 通讯作者:
Ping Liu
Anisotropic functional deconvolution with long-memory noise: the case of a multi-parameter fractional Wiener sheet
具有长记忆噪声的各向异性函数反卷积:多参数分数维纳片的情况
- DOI:
10.1080/10485252.2019.1604953 - 发表时间:
2018 - 期刊:
- 影响因子:1.2
- 作者:
Rida Benhaddou;Qing Liu - 通讯作者:
Qing Liu
Qing Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Liu', 18)}}的其他基金
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
CAREER: Enabling Progressive Data Analytics for High Performance Computing: Algorithms and System Support
职业:实现高性能计算的渐进式数据分析:算法和系统支持
- 批准号:
2144403 - 财政年份:2022
- 资助金额:
$ 19万 - 项目类别:
Continuing Grant
SHF:Small: Collaborative Research: Understanding, Modeling, and System Support for HPC Data Reduction
SHF:Small:协作研究:HPC 数据缩减的理解、建模和系统支持
- 批准号:
1812861 - 财政年份:2018
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
SHF:Small: Collaborative Research: Tailoring Memory Systems for Data-Intensive HPC Applications
SHF:Small:协作研究:为数据密集型 HPC 应用定制内存系统
- 批准号:
1718297 - 财政年份:2017
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
STTR Phase I: A novel biomimetic nanofiber coating on dental implants for gingival regeneration
STTR 第一阶段:用于牙龈再生的牙种植体上的新型仿生纳米纤维涂层
- 批准号:
1346430 - 财政年份:2014
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 19万 - 项目类别:
Standard Grant