Transformative Atomic Chemical Resolution Analysis of Modulated Nanostructures

调制纳米结构的转化原子化学分辨率分析

基本信息

  • 批准号:
    1710681
  • 负责人:
  • 金额:
    $ 39.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Non-Technical AbstractAlloys with modulated nano-scale structures have their constituent elements (copper and titanium, for example) distributed in wave-like patterns throughout their volume. The peaks and valleys of the waves correspond to high copper and high titanium concentrations. The spacings between the peaks and valleys are small, typically 20 to 70 atom diameters. These modulations depend on alloy processing conditions, and they can change after the alloys are put into service. Important properties of these alloys, such as strength, and magnetic and electrical properties, depend on the composition modulation, so the ability to measure these characteristics is essential for theoretical understanding and practical applications, such as advanced manufacturing and defense applications. Accurate experimental measurements of these fine scale composition modulations are now possible for the first time, using newly developed high-resolution electron microscopes. The primary objectives of this research are high-resolution measurements of these modulations and their three-dimensional distributions in several alloys of practical and theoretical importance. The results will be reported widely in the scientific archival literature and at research conferences and symposia, and they will be incorporated into teaching at our highly regarded Winter School for High Resolution Electron Microscopy and classes on electron microscopy and materials science. The Winter School is taught every January (beginning in 1981) at Arizona State University. Typical enrollment is 50 students (both domestic and international) about equally divided between women and men. Enrollment in graduate courses on materials phase transformations and comprehensive electron microscopy (both lectures and laboratories) is typically fifteen to twenty students per semester, with an even gender distribution. Technical AbstractThe primary objectives of this project are quantitative measurements of composition fluctuations in alloys with modulated nanostructures, and tomographic imaging of the nanostructures. Formation of modulated nanostructures in alloys is most often attributed to spinodal precipitation reactions. Modulation composition amplitude and wavelength are the most important experimental variables to measure to control the mechanical, magnetic and electrical properties of these important alloys, and for correlation with alloy theory. X-ray and electron diffraction and diffraction contrast electron imaging have been used earlier to measure modulation wavelengths, but these methods do not provide the very important modulation compositions and gradients. The wavelengths observed are small, typically about 20 to 70 atom diameters, thus very high spatial resolution composition measurements are required. A new aberration corrected and monochromated field emission STEM EMs fitted with precision EELs and EDX spectrometers have demonstrated the required atomic spatial and chemical resolution. These will be used in HAADF STEM/EELs/EDX line scan and spectrum imaging modes to determine modulation composition amplitudes and gradients. Earlier conventional microscopy also showed that modulations could occur in more than one dimension and that complicated faults occurred in modulation periodicity, but projection complications prevented a clear interpretation of these features. HAADF STEM and HAADF STEM/EELs tomographic imaging will be used to develop a more complete understanding of these features. The new transformative high-resolution chemical imaging methods demonstrated on this project are important for advancing research and development on diverse alloys important for US manufacturing and defense applications and for graduate education. Program results will be reported in archival journals and scientific meetings, and will be incorporated into the highly regarded annual Winter School for High Resolution Electron Microscopy and into the graduate education program for materials and solid state science.
具有调制纳米尺度结构的合金的组成元素(例如铜和钛)在其整个体积中以波浪状图案分布。波的峰和谷对应于高铜和高钛浓度。峰和谷之间的间距很小,通常为20至70个原子直径。这些调制取决于合金加工条件,并且它们可以在合金投入使用后改变。这些合金的重要特性,如强度、磁和电特性,取决于成分调制,因此测量这些特性的能力对于理论理解和实际应用(如先进制造和国防应用)至关重要。精确的实验测量,这些精细的规模组成调制现在是第一次,使用新开发的高分辨率电子显微镜。 本研究的主要目标是高分辨率测量这些调制和它们的三维分布在几个合金的实际和理论上的重要性。结果将在科学档案文献和研究会议和研讨会上广泛报道,并将纳入我们备受推崇的高分辨率电子显微镜冬季学校的教学以及电子显微镜和材料科学课程。冬季学校每年一月(从1981年开始)在亚利桑那州立大学授课。典型的入学人数是50名学生(包括国内和国际学生),男女比例大致相等。材料相变和综合电子显微镜研究生课程(包括讲座和实验室)的入学人数通常为每学期15至20名学生,性别分布均匀。本项目的主要目标是定量测量具有调制纳米结构的合金中的成分波动,以及纳米结构的断层成像。在合金中调制纳米结构的形成最常归因于亚稳沉淀反应。调制成分的振幅和波长是最重要的实验变量来测量,以控制这些重要合金的机械,磁和电性能,并与合金理论相关联。X射线和电子衍射以及衍射衬度电子成像已经在早期被用于测量调制波长,但是这些方法不能提供非常重要的调制成分和梯度。观察到的波长很小,通常约为20至70个原子直径,因此需要非常高的空间分辨率的组成测量。配备精密EEL和EDX光谱仪的新型像差校正和单色场发射STEM EM已证明了所需的原子空间和化学分辨率。这些将用于HAADF STEM/EEL/EDX线扫描和光谱成像模式,以确定调制成分振幅和梯度。早期的传统显微镜也表明,调制可以发生在一个以上的维度和复杂的故障发生在调制周期性,但投影并发症阻止了这些功能的清晰解释。HAADF STEM和HAADF STEM/EELs断层成像将用于更全面地了解这些功能。该项目展示的新的变革性高分辨率化学成像方法对于推进对美国制造业和国防应用以及研究生教育重要的各种合金的研究和开发非常重要。计划结果将在档案期刊和科学会议上报告,并将被纳入备受推崇的年度高分辨率电子显微镜冬季学校,并纳入材料和固态科学的研究生教育计划。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization of Modulated Nanostructure in Au-Pt Alloy using Aberration Corrected STEM
使用像差校正 STEM 表征 Au-Pt 合金中的调制纳米结构
  • DOI:
    10.1017/s1431927622009187
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Sawant, Ronit;Carpenter, R W
  • 通讯作者:
    Carpenter, R W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ray Carpenter其他文献

Ray Carpenter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ray Carpenter', 18)}}的其他基金

MRI: Acquisition of an Aberration Corrected High Resolution Analytical Transmission Electron Micro. for Advanced Materials Research
MRI:像差校正高分辨率分析透射电子显微镜的采集。
  • 批准号:
    0821796
  • 财政年份:
    2008
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
NUE: In Situ Real-Time Atomic Scale Nanomaterials Synthesis, Characterization and Modeling for Undergraduate Education
NUE:用于本科教育的原位实时原子级纳米材料合成、表征和建模
  • 批准号:
    0407412
  • 财政年份:
    2004
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
U.S.-Germany Cooperative Research in Ceramics and Holography
美德陶瓷和全息技术合作研究
  • 批准号:
    9024670
  • 财政年份:
    1991
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Precipitation Reaction Nanochemistry on Silicon: Oxygen and Carbon Distribution
硅上的沉淀反应纳米化学:氧和碳的分布
  • 批准号:
    8901841
  • 财政年份:
    1990
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant
Microspectroscopy and Specimen Preparation Instrumentation: The Facility for High Resolution Electron Microscopy (Materials Research)
显微光谱学和样品制备仪器:高分辨率电子显微镜设施(材料研究)
  • 批准号:
    8601354
  • 财政年份:
    1986
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
IUC Research Activity: Correlation of Electrically Active Defects in Processed Silicon Wafers with Structural Inhomo- geneities in the Parent CZ-Grown Crystals(Materials Research
IUC 研究活动:加工硅片中的电活性缺陷与母体 CZ 生长晶体中的结构不均匀性的相关性(材料研究)
  • 批准号:
    8310649
  • 财政年份:
    1983
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Continuing Grant

相似海外基金

Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
  • 批准号:
    2313365
  • 财政年份:
    2023
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Linking the field and the atomic scales: Soft x-ray spectroscopy of soil chemical processes
连接领域和原子尺度:土壤化学过程的软 X 射线光谱
  • 批准号:
    RGPIN-2018-06117
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Accurate Atomic Transition Probabilities in Aid of APOGEE and the Study of Galactic Chemical Evolution
准确的原子跃迁概率辅助 APOGEE 和银河化学演化研究
  • 批准号:
    2206050
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Development of self-controlled wet-chemical nanomachining to shape and cleave Si crystals on the atomic-layer scale
开发自控湿化学纳米加工以在原子层尺度上成形和切割硅晶体
  • 批准号:
    22H00187
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
  • 批准号:
    RGPIN-2018-06603
  • 财政年份:
    2022
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Linking the field and the atomic scales: Soft x-ray spectroscopy of soil chemical processes
连接领域和原子尺度:土壤化学过程的软 X 射线光谱
  • 批准号:
    RGPIN-2018-06117
  • 财政年份:
    2021
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Atomic Efficient Catalytic Technology for Sustainable Chemical and Fuel Syntheses Enabled by Active Site Coupling and Kinetic Property Tuning
通过活性位点耦合和动力学特性调节实现可持续化学和燃料合成的原子效率催化技术
  • 批准号:
    RGPIN-2018-06603
  • 财政年份:
    2021
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Linking the field and the atomic scales: Soft x-ray spectroscopy of soil chemical processes
连接领域和原子尺度:土壤化学过程的软 X 射线光谱
  • 批准号:
    RGPIN-2018-06117
  • 财政年份:
    2020
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Discovery Grants Program - Individual
Fulfilling the Atomic Physics Needs for Spectral Diagnostics of Cosmic Chemical Evolution
满足宇宙化学演化光谱诊断的原子物理需求
  • 批准号:
    2009811
  • 财政年份:
    2020
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Standard Grant
Accurate energy evaluation at atomic level and establishing NMR chemical shifts as reliable reporters of atomic charge distributions
在原子水平上进行准确的能量评估,并建立 NMR 化学位移作为原子电荷分布的可靠报告者
  • 批准号:
    2481046
  • 财政年份:
    2020
  • 资助金额:
    $ 39.24万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了