RUI: Engineering Nanoscale Disorder in Polymer-Semiconductor Nanocrystal Composites for Minimized Optical Losses

RUI:聚合物半导体纳米晶体复合材料中的工程纳米级无序以最小化光学损耗

基本信息

  • 批准号:
    1710667
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Abstract:This research is developing new approaches for the design and preparation of high performance polymer- nanocrystal composites engineered to minimize optical losses. Polymer-nanocrystal composites are employed in a wide range of applications, such as for lighting and displays, as scintillation detectors, light-emitting diodes, and solar concentrators. This research is integrating theory, synthesis, and materials characterization, to enable improved polymer-nanocrystal composites for the most demanding optical applications. Western Washington University (WWU) is a primarily undergraduate institution where undergraduates comprise the majority of the scientific workforce and are involved in every phase of the research. About five undergraduates per year are participating in the project, receiving a strong foundation in materials and synthetic chemistry, optics, and mathematics, as well as the chance to experience the excitement of independent, creative scientific investigation. The research also involves outreach to 5th and 6th graders, and to underrepresented groups in local high schools, as well as other outreach activities.Technical Abstract:This research is developing new approaches for the design and preparation of densely-packed, high performance polymer-luminescent semiconductor nanocrystal (NC) composites engineered to minimize optical losses through nanometer- to micron-scale control of interparticle spacing distributions. Polymer-NC composites are employed as optically-active elements in a wide range of applications, such as downshifting layers for lighting and displays, as scintillation detectors, hybrid organic/inorganic light-emitting diodes, and luminescent solar concentrators. These and related applications often require a higher volumetric density of NCs, along with better nanoparticle dispersion, than is currently achievable, in order to minimize aggregation-induced optical losses from light scattering and interparticle energy- and charge-transfer. Purely random dispersions fail to minimize optical losses from several important mechanisms characterized by a non-linear dependence on particle spacing, including elastic light-scattering, and quenching caused by near-field interparticle energy- and charge-transfer, because these processes are dominated not by the mean interparticle separation, but instead by fluctuations around the mean. The development of high performance polymer-NC composites for the most demanding optical applications necessitates a careful balance of order and disorder, managed over nanometer- to micron-length scales, requiring more careful design and control over interparticle spacing statistics than has generally been recognized or pursued. This research is integrating theory, synthesis, and materials characterization, in order to identify, measure, and control the key statistical properties of luminescent NC spatial distributions which govern non-linear distance-dependent loss mechanisms. The overall results are new concepts and new materials for high performance polymer-NC composites needed for the most demanding optical applications. Western Washington University (WWU) is a primarily undergraduate institution where undergraduates comprise the majority of the scientific workforce and are involved in every phase of the research. About five undergraduates per year are participating in the project, receiving a strong foundation in materials and synthetic chemistry, optics, and mathematics, as well as the chance to experience the excitement of independent, creative scientific investigation. The PIs encourage students to explore and understand implications of their work beyond science by participating in regional business plan contests with product concepts derived from this undergraduate research. Additional outreach activities include laboratory tours and hands-on activities with 5th and 6th graders through WWU's Compass-to-Campus program; direct involvement of high school students in the research; and outreach to local high schools, especially those serving large populations of Hispanic students.
非技术摘要:这项研究正在开发新的方法,设计和制备高性能的聚合物-光波导复合材料,以最大限度地减少光损耗。聚合物-光致变色复合材料用于广泛的应用,例如用于照明和显示器,作为闪烁检测器、发光二极管和太阳能集中器。这项研究将理论、合成和材料表征相结合,以使改进的聚合物-玻璃纤维复合材料能够用于最苛刻的光学应用。 西华盛顿大学(WWU)是一所主要的本科院校,本科生占科学劳动力的大多数,并参与研究的每个阶段。每年约有五名本科生参与该项目,在材料和合成化学,光学和数学方面打下坚实的基础,并有机会体验独立,创造性的科学研究的兴奋。 该研究还涉及外展到第5和第6年级的学生,并在当地高中,以及其他outreach activities.Technical Abstract:本研究正在开发新的方法,用于设计和制备密集包装,高性能聚合物发光半导体纳米(NC)复合材料,通过纳米到微米尺度的控制粒子间的间距分布,以尽量减少光损耗。聚合物-NC复合材料在广泛的应用中用作光学活性元件,例如用于照明和显示器的降频层,作为闪烁检测器,混合有机/无机发光二极管和发光太阳能集中器。这些和相关的应用通常需要比目前可实现的更高的NC体积密度,沿着具有更好的纳米颗粒分散,以使来自光散射和颗粒间能量和电荷转移的聚集诱导的光学损失最小化。无规色散不能最大限度地减少光学损失,从几个重要的机制,其特征在于非线性依赖于粒子间距,包括弹性光散射,和淬火引起的近场粒子间能量和电荷转移,因为这些过程是主导的平均粒子间的分离,而是由波动的平均值。高性能聚合物-NC复合材料的发展,最苛刻的光学应用需要一个仔细的平衡秩序和混乱,管理纳米到微米的长度尺度,需要更仔细的设计和控制粒子间的间距统计比一般公认的或追求。这项研究是集成的理论,合成和材料表征,以识别,测量和控制的发光NC空间分布的关键统计特性,管理非线性距离相关的损失机制。总体结果是为最苛刻的光学应用所需的高性能聚合物-NC复合材料提供了新概念和新材料。西华盛顿大学(WWU)是一所主要的本科院校,本科生占科学劳动力的大多数,并参与研究的每个阶段。每年约有五名本科生参与该项目,在材料和合成化学,光学和数学方面打下坚实的基础,并有机会体验独立,创造性的科学研究的兴奋。PI鼓励学生通过参加区域商业计划竞赛来探索和理解他们的工作超出科学的影响,这些竞赛的产品概念来自本科研究。额外的推广活动包括实验室图尔斯之旅和动手活动与第五和第六年级学生通过WWU的指南针到校园计划;高中生在研究的直接参与;和推广到当地高中,特别是那些为西班牙裔学生的大量人口。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Dot–Block Copolymer Hybrids for Low Scattering Luminescent Solar Concentrators
  • DOI:
    10.1021/acsapm.1c01837
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    K. Koch;Daniel Korus;J. Doyle;M. Plummer;Meredith Boxx;H. Win-Piazza;S. McDowall;D. Patrick;D. Rider
  • 通讯作者:
    K. Koch;Daniel Korus;J. Doyle;M. Plummer;Meredith Boxx;H. Win-Piazza;S. McDowall;D. Patrick;D. Rider
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Rider其他文献

O50: A RENEW’d strategy to ending the diagnostic odyssey: Semi-automated REanalysis of NEgative Whole exome/genome cases*
  • DOI:
    10.1016/j.gimo.2023.100703
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rory Olson;Alejandro Ferrer;Patrick Duffy;Filippo Pinto E Vairo;Laura Schultz-Rogers;Erica Macke;Stephanie Safgren;Joel Morales-Rosado;Gavin Oliver;Lisa Schimmenti;Eva Kahn;Myra Wick;Ralitza Gavrilova;Michael Meiners;David Rider;Megan Williams;Eric Klee
  • 通讯作者:
    Eric Klee
The Genome Sequence DataBase (GSDB): meeting the challenge of genomic sequencing
基因组序列数据库 (GSDB):应对基因组测序的挑战
  • DOI:
    10.1093/nar/24.1.13
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    G. Keen;Jillian Burton;David Crowley;Emily Dickinson;Ada Espinosa;E. Franks;C. Harger;Manning Mo;Shelley March;Mia McLeod;John O'Neill;A. Power;Maria Pumilia;Rhonda Reinert;David Rider;John Rohrlich;Jolene Schwertfeger;Linda Smyth;Nina Thayer;Charles Troup;C. Fields
  • 通讯作者:
    C. Fields
The Genome Sequence DataBase version 1.0 (GSDB): from low pass sequences to complete genomes
基因组序列数据库 1.0 版 (GSDB):从低通序列到完整基因组
  • DOI:
    10.1093/nar/25.1.18
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    C. Harger;M. Skupski;E. Allen;Christopher Clark;David Crowley;Emily Dickinson;David Easley;Ada Espinosa;A. Farmer;C. Fields;L. Flores;Lynn Harris;G. Keen;Maurice Manning;M. P. McLeod;John O'Neill;Maria Pumilia;Rhonda Reinert;David Rider;John Rohrlich;Yolanda Romero;Jolene Schwertfeger;G. Seluja;A. Siepel;Gautam Singh;Linda Smyth;D. Stamper;Judy Stein;Randy Suggs;R. Takkallapalli;Nina Thayer;Gary Thompson;Colleen Walsh;Frederick Wedgeworth;P. A. Schad
  • 通讯作者:
    P. A. Schad
The effect of reconstruction type and radiotherapy on pigment uptake in nipple tattooing
  • DOI:
    10.1016/j.ejso.2014.02.054
  • 发表时间:
    2014-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Rider;Fiona Court;Jonathan Horsnell;Rachel Owers;James Bristol;Charlie Chan;Clare Fowler;Sarah Vesty
  • 通讯作者:
    Sarah Vesty

David Rider的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Rider', 18)}}的其他基金

Collaborative Research: Digitization TCN: InvertNet--An Integrative Platform for Research on Environmental Change, Species Discovery and Identification
合作研究:数字化TCN:InvertNet——环境变化、物种发现和识别研究的综合平台
  • 批准号:
    1115198
  • 财政年份:
    2011
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant

相似国自然基金

Frontiers of Environmental Science & Engineering
  • 批准号:
    51224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21224004
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese Journal of Chemical Engineering
  • 批准号:
    21024805
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Engineering Chiral Nanoscale Interactions to Enhance Nanomaterial Transport and Uptake in Tissue and at Biointerfaces
职业:工程手性纳米级相互作用以增强组织和生物界面中纳米材料的运输和吸收
  • 批准号:
    2337387
  • 财政年份:
    2024
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Nanoscale engineering of isolated molecular wires for nanoscale devices
用于纳米级器件的分离分子线的纳米级工程
  • 批准号:
    2893835
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
REU Site: Research Experience for Undergraduates in Biosensing - Engineering Molecular or Nanoscale Signal Transducers for High-Performance Bio-Detection
REU 网站:生物传感本科生研究经验 - 工程分子或纳米级信号传感器用于高性能生物检测
  • 批准号:
    2243754
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
  • 批准号:
    2875161
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Studentship
Conference: 2023 NSF Nanoscale Science and Engineering Grantees Conference
会议:2023年NSF纳米科学与工程受资助者会议
  • 批准号:
    2330602
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Engineering nanoscale tools for cellular interrogation
用于细胞询问的工程纳米级工具
  • 批准号:
    FT220100749
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    ARC Future Fellowships
Engineering Quantum Fluctuation Phenomena in Nanoscale Quantum Optical Systems
纳米级量子光学系统中的工程量子涨落现象
  • 批准号:
    2309341
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
REU Site: Nanoscale Science and Engineering at Vanderbilt University
REU 站点:范德比尔特大学纳米科学与工程
  • 批准号:
    2244050
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Pathogen Deactivation through Nanoscale Engineering of Touch Surfaces
通过触摸表面的纳米级工程灭活病原体
  • 批准号:
    573621-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    University Undergraduate Student Research Awards
2022 NSF Nanoscale Science and Engineering Grantees Conference Sustainable Nanotechnology Focus - Visionary Breakthroughs facilitated by Nano
2022 年 NSF 纳米科学与工程受资助者会议可持续纳米技术焦点 - 纳米促进的远见突破
  • 批准号:
    2230932
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了