Dynamic State and Parameter Estimation based on Robust Unscented Kalman Filters for Power System Monitoring and Control

基于鲁棒无迹卡尔曼滤波器的电力系统监测与控制动态状态和参数估计

基本信息

项目摘要

The enhancement of the reliability, security, and resiliency of electric power systems depends on the availability of fast, accurate, and robust dynamic state estimators. These estimators should be robust to gross errors on the measurements and the model parameter values while providing good state estimates even in the presence of large dynamical system model uncertainties and non-Gaussian thick-tailed process and observation noises. It turns out that the current Kalman filter-based dynamic state estimators given in the literature suffer from several important shortcomings, precluding them from being adopted by power utilities for practical applications. To be specific, they cannot handle (i) dynamic model uncertainty and parameter errors; (ii) non-Gaussian process and observation noise of the system nonlinear dynamic models; (iii) any type of outliers that are induced by impulsive measurement and system process noises, or incorrect system parameter values, to cite a few; and (iv) all types of cyber attacks. To address these challenges, this project will resort to both robust statistical theory and robust control theory to develop a general theoretical framework for robust dynamic state and parameter estimation. This new general framework will provide reliable real-time state and parameter estimates for power system monitoring, control, protection, and security analysis. In addition, it will contribute to the next generation of online state estimators with synchrophasor measurements and the redesign of robust detectors against cyber attacks. The project also contains an integrated educational agenda for K-12 students, undergraduates and graduate students who are interested in the STEM (Science Technology Engineering and Mathematics) area.This project will pioneer a general theoretical framework that integrates both robust statistical theory and robust control theory for robust dynamic state and parameter estimation of a cyber-physical system. Specifically, the generalized maximum-likelihood-type (GM)-estimator, the unscented Kalman filter, and the H-infinity filter will be integrated into a unified framework to yield various centralized and decentralized robust dynamic state estimators. These new estimators will be able to handle large system uncertainties as well as suppress three types of outliers while achieving good statistical efficiency under a broad range of non-Gaussian process and observation noise. The three types of outliers, including observation, innovation, and structural outliers are caused by either an unreliable dynamical model or real-time synchrophasor measurements with data quality issues, which are commonly seen in the power system. Furthermore, the theories of robust statistics will be extended to structured nonlinear regression models. That is, the theory of breakdown point in linear structured regression will be extended to nonlinear dynamical models characterized by sparse Jacobian matrices, which is precisely the case for power systems. To this end, the global and local breakdown points of all the proposed methods will be investigated. Finally, the developed methods will be implemented and tested on two practical power systems, including the Southern Brazil power system and the Dominion Virginia Power 500-KV transmission system, which is observed through a set of redundant real-time synchrophasor measurements.
提高电力系统的可靠性、安全性和恢复力依赖于快速、准确和鲁棒的动态状态估计器的可用性。这些估计应该是强大的粗误差的测量和模型参数值,同时提供良好的状态估计,即使在存在大的动态系统模型的不确定性和非高斯厚尾过程和观测噪声。事实证明,目前的卡尔曼滤波器为基础的动态状态估计在文献中遭受几个重要的缺点,排除他们被采用的电力公司的实际应用。具体而言,它们无法处理(i)动态模型不确定性和参数误差;(ii)系统非线性动态模型的非高斯过程和观测噪声;(iii)由脉冲测量和系统过程噪声或不正确的系统参数值引起的任何类型的离群值;以及(iv)所有类型的网络攻击。为了解决这些挑战,本项目将同时诉诸鲁棒统计理论和鲁棒控制理论,以发展鲁棒动态状态和参数估计的一般理论框架。这种新的通用框架将为电力系统的监测、控制、保护和安全分析提供可靠的实时状态和参数估计。此外,它将有助于下一代在线状态估计器与同步相量测量和重新设计强大的检测器,以抵御网络攻击。该项目还包括一个综合教育议程,为K-12学生,本科生和研究生谁感兴趣的STEM(科学技术工程和数学)领域。该项目将开创一个通用的理论框架,结合鲁棒统计理论和鲁棒控制理论的鲁棒动态状态和参数估计的信息物理系统。具体而言,广义最大似然型(GM)估计,无迹卡尔曼滤波器和H-无穷滤波器将被集成到一个统一的框架,以产生各种集中和分散的鲁棒动态状态估计。这些新的估计器将能够处理大的系统不确定性,以及抑制三种类型的离群值,同时在广泛的非高斯过程和观测噪声下实现良好的统计效率。三种类型的异常值,包括观测值、新息和结构异常值,是由不可靠的动态模型或具有数据质量问题的实时同步相量测量引起的,这在电力系统中很常见。此外,稳健统计的理论将扩展到结构化非线性回归模型。也就是说,在线性结构回归的崩溃点理论将扩展到非线性动力学模型的特征在于稀疏雅可比矩阵,这正是电力系统的情况下。为此,将研究所有建议方法的全局和局部故障点。最后,所开发的方法将实施和测试两个实际的电力系统,包括巴西南部电力系统和自治领弗吉尼亚州电力500千伏输电系统,这是通过一组冗余的实时同步相量测量观察。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Efficient Multifidelity Model for Assessing Risk Probabilities in Power Systems under Rare Events
  • DOI:
    10.24251/hicss.2020.381
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yijun Xu;M. Korkali;L. Mili;Xiao Chen
  • 通讯作者:
    Yijun Xu;M. Korkali;L. Mili;Xiao Chen
Robust Frequency Divider for Power System Online Monitoring and Control
  • DOI:
    10.1109/tpwrs.2017.2785348
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Junbo Zhao;L. Mili;F. Milano
  • 通讯作者:
    Junbo Zhao;L. Mili;F. Milano
A Generalized False Data Injection Attacks Against Power System Nonlinear State Estimator and Countermeasures
  • DOI:
    10.1109/tpwrs.2018.2794468
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Junbo Zhao;L. Mili;Meng Wang
  • 通讯作者:
    Junbo Zhao;L. Mili;Meng Wang
Power System Robust Decentralized Dynamic State Estimation Based on Multiple Hypothesis Testing
  • DOI:
    10.1109/tpwrs.2017.2785344
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Junbo Zhao;L. Mili
  • 通讯作者:
    Junbo Zhao;L. Mili
A Data-Driven Nonparametric Approach for Probabilistic Load-Margin Assessment Considering Wind Power Penetration
  • DOI:
    10.1109/tpwrs.2020.2987900
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Yijun Xu;L. Mili;M. Korkali;Kiran Karra;Zongsheng Zheng;Xiao Chen
  • 通讯作者:
    Yijun Xu;L. Mili;M. Korkali;Kiran Karra;Zongsheng Zheng;Xiao Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lamine Mili其他文献

Statistical analysis and method to propagate the impact of measurement uncertainty on dynamic mode decomposition
统计分析和传播测量不确定度对动态模式分解影响的方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pooja Algikar;Pranav Sharma;M. Netto;Lamine Mili;P. Sharma;M. Netto
  • 通讯作者:
    M. Netto
Enhanced power flow solution in complex plane
  • DOI:
    10.1016/j.ijepes.2021.107501
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robson Pires;G. Chagas;Lamine Mili
  • 通讯作者:
    Lamine Mili
Electromechanical Wave Propagation for Disturbance Arrival Time Assessment in Power Systems
用于电力系统中扰动到达时间评估的机电波传播
A Real-time Enhanced Thevenin Equivalent Parameter Estimation Method for PLL Synchronization Stability Control in VSC
  • DOI:
    10.1109/tpwrd.2021.3113379
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Long Peng;Yingbiao Li;Lamine Mili;Yong Tang;Yijun Xu;Bing Zhao;Jiajue Li
  • 通讯作者:
    Jiajue Li

Lamine Mili的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lamine Mili', 18)}}的其他基金

Risk Assessment of Power Systems to Extreme Events using Polynomial-Chaos-based Methods
使用基于多项式混沌的方法对电力系统进行极端事件风险评估
  • 批准号:
    1917308
  • 财政年份:
    2019
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Workshop on Resilient and Sustainable Interdependent Critical Infrastructures, Alexandria, Virginia, December 7-8, 2009
弹性和可持续的相互依赖的关键基础设施研讨会,弗吉尼亚州亚历山大,2009 年 12 月 7-8 日
  • 批准号:
    1002561
  • 财政年份:
    2009
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
EFRI: Resilient and Sustainable Interdependent Electric Power and Communications Systems
EFRI:弹性且可持续的相互依赖的电力和通信系统
  • 批准号:
    0835879
  • 财政年份:
    2008
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Grantees Workshop On The NSF-ONR Research Initiative-Electric Power Networks Efficiency And Security (EPNES) being held July 12-14, 2004 in Mayaguez, Puerto Rico.
NSF-ONR 研究计划电力网络效率和安全 (EPNES) 受资助者研讨会于 2004 年 7 月 12 日至 14 日在波多黎各马亚圭斯举行。
  • 批准号:
    0431480
  • 财政年份:
    2004
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Mitigating the Vulnerability of Critical Infrastructures to Catastrophic Failures
减轻关键基础设施遭受灾难性故障的脆弱性
  • 批准号:
    0136020
  • 财政年份:
    2001
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
NSF Young Investigator
NSF 青年研究员
  • 批准号:
    9257204
  • 财政年份:
    1992
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Continuing Grant
RIA: High-Breakdown Point Estimation in Electric Power Systems
RIA:电力系统中的高击穿点估计
  • 批准号:
    9009099
  • 财政年份:
    1990
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Simple Approach to Parameter Inference in State-Space Models
状态空间模型中参数推断的简单方法
  • 批准号:
    2611254
  • 财政年份:
    2021
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Studentship
A Simple Approach to Parameter Inference in State-Space Models
状态空间模型中参数推断的简单方法
  • 批准号:
    2610815
  • 财政年份:
    2021
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Studentship
State and Parameter Estimation: Variationally Stable Models and Physics-Informed Learning
状态和参数估计:变分稳定模型和物理知情学习
  • 批准号:
    2012469
  • 财政年份:
    2020
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
State and parameter estimation in dynamical metabolic models for personalized model-based management of diabetes
动态代谢模型中的状态和参数估计,用于基于模型的个性化糖尿病管理
  • 批准号:
    339175157
  • 财政年份:
    2017
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Research Grants
State Space Models: A New Look at Smoothing, Parameter Inference, and Model Choice
状态空间模型:平滑、参数推断和模型选择的新视角
  • 批准号:
    1712872
  • 财政年份:
    2017
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Standard Grant
Model predictive parameter and state estimation and optimal sensor placement (B08)
模型预测参数和状态估计以及最佳传感器放置(B08)
  • 批准号:
    277910173
  • 财政年份:
    2015
  • 资助金额:
    $ 32.56万
  • 项目类别:
    CRC/Transregios
Input-to-state stability and stabilization of distributed parameter systems
分布参数系统的输入状态稳定性和稳定性
  • 批准号:
    281417092
  • 财政年份:
    2015
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Research Grants
Stabilization of distributed parameter systems based on discontinuous state transformations
基于不连续状态变换的分布式参数系统的稳定性
  • 批准号:
    24760329
  • 财政年份:
    2012
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
State tomography and parameter estimation for superconducting quantum bits
超导量子比特的状态断层扫描和参数估计
  • 批准号:
    432457-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 32.56万
  • 项目类别:
    University Undergraduate Student Research Awards
State- and parameter estimation in Sigma-Delta ADC`s by using Kalman-filters
使用卡尔曼滤波器估计 Sigma-Delta ADC 中的状态和参数
  • 批准号:
    190715610
  • 财政年份:
    2011
  • 资助金额:
    $ 32.56万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了