Dynamic State and Parameter Estimation based on Robust Unscented Kalman Filters for Power System Monitoring and Control
基于鲁棒无迹卡尔曼滤波器的电力系统监测与控制动态状态和参数估计
基本信息
- 批准号:1711191
- 负责人:
- 金额:$ 32.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The enhancement of the reliability, security, and resiliency of electric power systems depends on the availability of fast, accurate, and robust dynamic state estimators. These estimators should be robust to gross errors on the measurements and the model parameter values while providing good state estimates even in the presence of large dynamical system model uncertainties and non-Gaussian thick-tailed process and observation noises. It turns out that the current Kalman filter-based dynamic state estimators given in the literature suffer from several important shortcomings, precluding them from being adopted by power utilities for practical applications. To be specific, they cannot handle (i) dynamic model uncertainty and parameter errors; (ii) non-Gaussian process and observation noise of the system nonlinear dynamic models; (iii) any type of outliers that are induced by impulsive measurement and system process noises, or incorrect system parameter values, to cite a few; and (iv) all types of cyber attacks. To address these challenges, this project will resort to both robust statistical theory and robust control theory to develop a general theoretical framework for robust dynamic state and parameter estimation. This new general framework will provide reliable real-time state and parameter estimates for power system monitoring, control, protection, and security analysis. In addition, it will contribute to the next generation of online state estimators with synchrophasor measurements and the redesign of robust detectors against cyber attacks. The project also contains an integrated educational agenda for K-12 students, undergraduates and graduate students who are interested in the STEM (Science Technology Engineering and Mathematics) area.This project will pioneer a general theoretical framework that integrates both robust statistical theory and robust control theory for robust dynamic state and parameter estimation of a cyber-physical system. Specifically, the generalized maximum-likelihood-type (GM)-estimator, the unscented Kalman filter, and the H-infinity filter will be integrated into a unified framework to yield various centralized and decentralized robust dynamic state estimators. These new estimators will be able to handle large system uncertainties as well as suppress three types of outliers while achieving good statistical efficiency under a broad range of non-Gaussian process and observation noise. The three types of outliers, including observation, innovation, and structural outliers are caused by either an unreliable dynamical model or real-time synchrophasor measurements with data quality issues, which are commonly seen in the power system. Furthermore, the theories of robust statistics will be extended to structured nonlinear regression models. That is, the theory of breakdown point in linear structured regression will be extended to nonlinear dynamical models characterized by sparse Jacobian matrices, which is precisely the case for power systems. To this end, the global and local breakdown points of all the proposed methods will be investigated. Finally, the developed methods will be implemented and tested on two practical power systems, including the Southern Brazil power system and the Dominion Virginia Power 500-KV transmission system, which is observed through a set of redundant real-time synchrophasor measurements.
电力系统的可靠性,安全性和弹性的提高取决于快速,准确和稳健的动态状态估计器的可用性。这些估计器应该对测量值和模型参数值进行总体错误,同时即使在存在大型动态系统模型不确定性以及非高斯厚尾过程和观察声的情况下,也提供了良好的状态估计值。事实证明,文献中给出的当前基于卡尔曼滤波器的动态状态估计器遭受了几个重要的缺点,从而使它们无法被Power公用事业采用用于实际应用。具体而言,他们无法处理(i)动态模型不确定性和参数错误; (ii)系统非线性动态模型的非高斯过程和观察噪声; (iii)由冲动测量和系统过程噪声或不正确的系统参数值引起的任何类型的异常值,以引用一些; (iv)所有类型的网络攻击。为了应对这些挑战,该项目将诉诸强大的统计理论和强大的控制理论,以开发出强大的动态状态和参数估计的一般理论框架。这个新的一般框架将为电力系统监视,控制,保护和安全分析提供可靠的实时状态和参数估计。此外,它将通过同步测量和对网络攻击的强大探测器的重新设计有助于下一代在线状态估计器。该项目还包含针对对STEM(科学技术工程和数学)领域感兴趣的K-12学生,本科生和研究生的综合教育议程。该项目将开拓一个一般理论框架,该框架将强大的统计理论和强大的控制理论集成了对稳健的动态状态和稳健的控制理论的稳健动力学和参数估计的估算。具体而言,广义的最大可能性型型(GM)估计器,无气味的卡尔曼滤波器和H-含量过滤器将集成到统一的框架中,以产生各种集中式和分散的鲁棒动态状态估计器。这些新的估计器将能够处理大型系统不确定性,并抑制三种类型的异常值,同时在广泛的非高斯过程和观察噪声下实现良好的统计效率。包括观察,创新和结构异常值在内的三种类型的异常值是由不可靠的动态模型或具有数据质量问题的实时同步测量值引起的,这些质量问题在电源系统中通常可以看到。此外,鲁棒统计的理论将扩展到结构化的非线性回归模型。也就是说,线性结构化回归中的崩溃点理论将扩展到以稀疏的雅各布矩阵为特征的非线性动力学模型,这正是功率系统的情况。为此,将研究所有拟议方法的全球和本地分解点。最后,将在两个实用的电力系统上实施和测试开发的方法,包括南部巴西电力系统和Dominion Virginia Power 500-KV传输系统,这是通过一组冗余实时同步量测量值观察到的。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Efficient Multifidelity Model for Assessing Risk Probabilities in Power Systems under Rare Events
- DOI:10.24251/hicss.2020.381
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yijun Xu;M. Korkali;L. Mili;Xiao Chen
- 通讯作者:Yijun Xu;M. Korkali;L. Mili;Xiao Chen
Robust Frequency Divider for Power System Online Monitoring and Control
- DOI:10.1109/tpwrs.2017.2785348
- 发表时间:2018-07
- 期刊:
- 影响因子:6.6
- 作者:Junbo Zhao;L. Mili;F. Milano
- 通讯作者:Junbo Zhao;L. Mili;F. Milano
A Generalized False Data Injection Attacks Against Power System Nonlinear State Estimator and Countermeasures
- DOI:10.1109/tpwrs.2018.2794468
- 发表时间:2018-01
- 期刊:
- 影响因子:6.6
- 作者:Junbo Zhao;L. Mili;Meng Wang
- 通讯作者:Junbo Zhao;L. Mili;Meng Wang
A Robust State Estimation Framework Considering Measurement Correlations and Imperfect Synchronization
- DOI:10.1109/tpwrs.2018.2790390
- 发表时间:2018-01
- 期刊:
- 影响因子:6.6
- 作者:Junbo Zhao;Shaobu Wang;L. Mili;B. Amidan;Renke Huang;Zhenyu Huang
- 通讯作者:Junbo Zhao;Shaobu Wang;L. Mili;B. Amidan;Renke Huang;Zhenyu Huang
Power System Robust Decentralized Dynamic State Estimation Based on Multiple Hypothesis Testing
- DOI:10.1109/tpwrs.2017.2785344
- 发表时间:2018-07
- 期刊:
- 影响因子:6.6
- 作者:Junbo Zhao;L. Mili
- 通讯作者:Junbo Zhao;L. Mili
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lamine Mili其他文献
Statistical analysis and method to propagate the impact of measurement uncertainty on dynamic mode decomposition
统计分析和传播测量不确定度对动态模式分解影响的方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pooja Algikar;Pranav Sharma;M. Netto;Lamine Mili;P. Sharma;M. Netto - 通讯作者:
M. Netto
Enhanced power flow solution in complex plane
- DOI:
10.1016/j.ijepes.2021.107501 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:
- 作者:
Robson Pires;G. Chagas;Lamine Mili - 通讯作者:
Lamine Mili
Electromechanical Wave Propagation for Disturbance Arrival Time Assessment in Power Systems
用于电力系统中扰动到达时间评估的机电波传播
- DOI:
10.1109/pesgm52003.2023.10252186 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Yarahmadi;Pooja Algikar;Lamine Mili - 通讯作者:
Lamine Mili
Lamine Mili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lamine Mili', 18)}}的其他基金
Risk Assessment of Power Systems to Extreme Events using Polynomial-Chaos-based Methods
使用基于多项式混沌的方法对电力系统进行极端事件风险评估
- 批准号:
1917308 - 财政年份:2019
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
Workshop on Resilient and Sustainable Interdependent Critical Infrastructures, Alexandria, Virginia, December 7-8, 2009
弹性和可持续的相互依赖的关键基础设施研讨会,弗吉尼亚州亚历山大,2009 年 12 月 7-8 日
- 批准号:
1002561 - 财政年份:2009
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
EFRI: Resilient and Sustainable Interdependent Electric Power and Communications Systems
EFRI:弹性且可持续的相互依赖的电力和通信系统
- 批准号:
0835879 - 财政年份:2008
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
Grantees Workshop On The NSF-ONR Research Initiative-Electric Power Networks Efficiency And Security (EPNES) being held July 12-14, 2004 in Mayaguez, Puerto Rico.
NSF-ONR 研究计划电力网络效率和安全 (EPNES) 受资助者研讨会于 2004 年 7 月 12 日至 14 日在波多黎各马亚圭斯举行。
- 批准号:
0431480 - 财政年份:2004
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
Mitigating the Vulnerability of Critical Infrastructures to Catastrophic Failures
减轻关键基础设施遭受灾难性故障的脆弱性
- 批准号:
0136020 - 财政年份:2001
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
RIA: High-Breakdown Point Estimation in Electric Power Systems
RIA:电力系统中的高击穿点估计
- 批准号:
9009099 - 财政年份:1990
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant
相似国自然基金
基于硅电极的微细电解加工状态检测与控制研究
- 批准号:52375449
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脊髓背角GABA与Glycine能神经元交互抑制回路的组成及其在神经病理性疼痛状态下的可塑性变化
- 批准号:82371226
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
硒补充对镉污染地区老年人群健康状态的干预效果及其机制研究
- 批准号:42377420
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
不同演(驯)化状态甘蔗保育效应光合生理生态机制解析
- 批准号:32360254
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
三维应力状态下高温冻土蠕变失效行为力学机理和模型研究
- 批准号:42301167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of remotely actuated deformable membranes for in situ mechanical testing of soft tissue
开发用于软组织原位机械测试的远程致动变形膜
- 批准号:
10708754 - 财政年份:2022
- 资助金额:
$ 32.56万 - 项目类别:
A Simple Approach to Parameter Inference in State-Space Models
状态空间模型中参数推断的简单方法
- 批准号:
2611254 - 财政年份:2021
- 资助金额:
$ 32.56万 - 项目类别:
Studentship
A Simple Approach to Parameter Inference in State-Space Models
状态空间模型中参数推断的简单方法
- 批准号:
2610815 - 财政年份:2021
- 资助金额:
$ 32.56万 - 项目类别:
Studentship
Neuroplasticity-Based Treatment to Address State Representation Failures in People with Early Psychosis
基于神经可塑性的治疗来解决早期精神病患者的状态表征失败问题
- 批准号:
10597078 - 财政年份:2020
- 资助金额:
$ 32.56万 - 项目类别:
State and Parameter Estimation: Variationally Stable Models and Physics-Informed Learning
状态和参数估计:变分稳定模型和物理知情学习
- 批准号:
2012469 - 财政年份:2020
- 资助金额:
$ 32.56万 - 项目类别:
Standard Grant