Mean Curvature Flow and Minimal Varieties
平均曲率流量和最小品种
基本信息
- 批准号:1711293
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Principal Investigator will study mean curvature flow, a natural process by which geometric shapes change over time. In mathematics, mean curvature flow and similar flows have proved to be very important: in particular, the closely related Ricci flow has been very much in the news because of its essential role in the solution of the long-standing Poincare conjecture. Mean curvature flow also arises in the physical world. For example, grain boundaries in annealing metals move by mean curvature flow. The Principal Investigator will also investigate minimal surfaces. Minimal surfaces are equilibrium shapes for mean curvature flow, that is, shapes that do not change over time. In astronomy, minimal surfaces occur as "apparent horizons" of black holes. Here on earth, soap films provide examples of minimal surfaces. Minimal surfaces are of great theoretical interest: tools first discovered in the study of minimal surfaces have proved to be valuable in many other areas of mathematics.The Principal Investigator plans to study properties of mean curvature flow,especially singularity formation and the non-uniqueness known as "fattening". Specific goals include determining whether generic surfaces give rise to smaller spacetime singular sets than do arbitrary initial surfaces, understanding the causes of fattening, and discovering natural conditions that prevent fattening. He also plans to investigate minimal varieties, including topics such as the behavior of the recently-discovered genus-g helicoids as the genus tends to infinity, the relationship between properties of a minimal surface and the total curvature of its boundary, the fine structure of branch points of minimal surfaces (and, in particular, whether the Micallef-White necessary conditions for a minimal surface to be area-minimizing near a branch point are also sufficient), and the relationship between topology and density at singularities of minimal varieties.
首席调查员将研究平均曲率流,这是一个几何形状随时间变化的自然过程。在数学中,平均曲率流和相似流已被证明是非常重要的:尤其是密切相关的Ricci流,因为它在解决长期存在的Poincare猜想中起着至关重要的作用,所以一直在新闻中非常重要。平均曲率流也出现在物理世界中。例如,退火金属中的晶界以平均曲率流动的方式移动。首席调查员还将调查最小曲面。最小曲面是平均曲率流的平衡形状,即不随时间变化的形状。在天文学中,最小的表面是黑洞的“视界”。在地球上,肥皂膜提供了极小表面的例子。极小曲面具有极大的理论意义:在极小曲面研究中首次发现的工具已被证明在数学的许多其他领域中都很有价值。首席研究员计划研究平均曲率流的性质,特别是奇点的形成和被称为“肥化”的非唯一性。具体目标包括确定普通曲面是否会产生比任意初始曲面更小的时空奇异集,了解肥胖的原因,以及发现防止肥胖的自然条件。他还计划研究极小簇,包括最近发现的亏格-g螺旋面在亏格趋于无穷时的行为,极小曲面的性质与其边界总曲率之间的关系,极小曲面分支点的精细结构(特别是极小曲面在分支点附近面积最小的Micallef-White必要条件是否也是充分的),以及极小簇奇点上的拓扑和密度之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian White其他文献
Helicoidal minimal surfaces of prescribed genus, I
指定属的螺旋极小曲面,I
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Hoffman;M. Traizet;Brian White - 通讯作者:
Brian White
Second Life: A Guide to Your Virtual World
- DOI:
- 发表时间:
2007-08 - 期刊:
- 影响因子:0
- 作者:
Brian White - 通讯作者:
Brian White
Attenuated inflammatory response in infant mice with Staphylococcus epidermidis CNS catheter infection
表皮葡萄球菌中枢神经系统导管感染的幼年小鼠炎症反应减弱
- DOI:
10.3389/fbrio.2023.1287779 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gwenn L. Skar;Kathryn Eaton;M. Beaver;Brian White;Morgan Harris;Jessica N. Snowden - 通讯作者:
Jessica N. Snowden
Book Review: The International Relations of the European Union, by Steve Marsh and Hans Mackenstein. (Pearson Longman, Harlow, 2005)
书评:《欧盟的国际关系》,史蒂夫·马什和汉斯·麦肯斯坦著。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Brian White - 通讯作者:
Brian White
A Hybrid control approach to autonomous navigation in cooperative multi-robot systems using Kripke models and model checking
- DOI:
10.1016/s1474-6670(17)32003-7 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:
- 作者:
Suresh Jeyaraman;Antonios Tsourdos;Rafaal Żbikowski;Brian White - 通讯作者:
Brian White
Brian White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian White', 18)}}的其他基金
Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
- 批准号:
1404282 - 财政年份:2014
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Aggregate formation under turbulence: small-scale biophysical interactions driving carbon flux in the ocean
湍流下的聚集体形成:驱动海洋碳通量的小规模生物物理相互作用
- 批准号:
1335088 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Horizontal Convection at Large Rayleigh Number: Laboratory Experiments and Direct Numerical Simulation
大瑞利数水平对流:实验室实验和直接数值模拟
- 批准号:
1155558 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Modeling from Molecules to Moose: Teaching Students to Develop Agent-Based Simulations in Biology
协作研究:从分子到驼鹿的建模:教学生开发基于代理的生物学模拟
- 批准号:
1140699 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
- 批准号:
1105330 - 财政年份:2011
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Gravity Currents and Large-Amplitude Internal Waves
重力流和大振幅内波
- 批准号:
1029773 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
- 批准号:
0707126 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CAREER: Exploring Authentic Inquiry: Factors that Influence Students
职业:探索真实探究:影响学生的因素
- 批准号:
9984612 - 财政年份:2000
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8553231 - 财政年份:1986
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8114162 - 财政年份:1981
- 资助金额:
$ 24万 - 项目类别:
Fellowship Award
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
University Undergraduate Student Research Awards
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2105576 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2146997 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant