Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
基本信息
- 批准号:1404282
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1404282, Principal Investigator: Brian WhiteA minimal surface is the mathematical counterpart to a soap film spanning a curved wire. The elegant appearance of a film of soap is associated to the soap film's property of spanning the wire in the most efficient way possible, where efficiency here means using as little surface area as possible. The physical elegance of the soap film is reflected in the mathematical description of its efficiency, which was discovered in the 18th century and continues to motivate progress in geometry and differential equations. Among the topics to be pursued under the support of this grant are the properties of helicoid-like minimal surfaces, which spiral in space like the surface of a screw or a multi-story parking ramp; the classical helicoid was discovered in the 1770s to be a minimal surfaces, but a number of other examples that closely resemble helicoids in the large but are more complicated near the origin were discovered only in the last ten years.The principal investigator plans to study helicoid-like minimal surfaces, densities of minimal cones, the dependence of a minimal surface on the total curvature of its boundary, the branching behavior of minimal surfaces, and properties of mean curvature flow, particularly singularity formation and the non-uniqueness known as "fattening." The methods to be employed are a combination of classical minimal surface theory, geometric measure theory, and partial differential equations.
摘要奖:DMS 1404282,首席研究员:布莱恩·怀特极小曲面是横跨一条曲线的肥皂片的数学对应物。肥皂膜的优雅外观与肥皂膜以最有效的方式跨越导线的特性有关,在这里,效率意味着使用尽可能少的表面积。肥皂膜的物理优雅体现在对其效率的数学描述上,这一点在18世纪被发现,并继续推动几何和微分方程的进步。在这笔赠款的支持下,将研究的课题包括螺旋形极小曲面的性质,它在空间中像螺杆表面或多层停车坡道一样螺旋形;经典的螺旋面在17世纪70年代被发现是一个极小曲面,但在最近十年才发现了许多在大范围内与螺旋面非常相似但在原点附近更复杂的例子。主要研究者计划研究类似螺旋面的极小曲面、极小圆锥的密度、极小曲面对其边界总曲率的依赖、极小曲面的分支行为以及平均曲率流的性质,特别是奇点形成和被称为“肥化”的非唯一性。所采用的方法是经典极小曲面理论、几何测度论和偏微分方程组的组合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian White其他文献
Helicoidal minimal surfaces of prescribed genus, I
指定属的螺旋极小曲面,I
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
David Hoffman;M. Traizet;Brian White - 通讯作者:
Brian White
Second Life: A Guide to Your Virtual World
- DOI:
- 发表时间:
2007-08 - 期刊:
- 影响因子:0
- 作者:
Brian White - 通讯作者:
Brian White
Attenuated inflammatory response in infant mice with Staphylococcus epidermidis CNS catheter infection
表皮葡萄球菌中枢神经系统导管感染的幼年小鼠炎症反应减弱
- DOI:
10.3389/fbrio.2023.1287779 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gwenn L. Skar;Kathryn Eaton;M. Beaver;Brian White;Morgan Harris;Jessica N. Snowden - 通讯作者:
Jessica N. Snowden
Book Review: The International Relations of the European Union, by Steve Marsh and Hans Mackenstein. (Pearson Longman, Harlow, 2005)
书评:《欧盟的国际关系》,史蒂夫·马什和汉斯·麦肯斯坦著。
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Brian White - 通讯作者:
Brian White
A Hybrid control approach to autonomous navigation in cooperative multi-robot systems using Kripke models and model checking
- DOI:
10.1016/s1474-6670(17)32003-7 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:
- 作者:
Suresh Jeyaraman;Antonios Tsourdos;Rafaal Żbikowski;Brian White - 通讯作者:
Brian White
Brian White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian White', 18)}}的其他基金
Mean Curvature Flow and Minimal Varieties
平均曲率流量和最小品种
- 批准号:
1711293 - 财政年份:2017
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Aggregate formation under turbulence: small-scale biophysical interactions driving carbon flux in the ocean
湍流下的聚集体形成:驱动海洋碳通量的小规模生物物理相互作用
- 批准号:
1335088 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Horizontal Convection at Large Rayleigh Number: Laboratory Experiments and Direct Numerical Simulation
大瑞利数水平对流:实验室实验和直接数值模拟
- 批准号:
1155558 - 财政年份:2012
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Collaborative Research: Modeling from Molecules to Moose: Teaching Students to Develop Agent-Based Simulations in Biology
协作研究:从分子到驼鹿的建模:教学生开发基于代理的生物学模拟
- 批准号:
1140699 - 财政年份:2012
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
- 批准号:
1105330 - 财政年份:2011
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Gravity Currents and Large-Amplitude Internal Waves
重力流和大振幅内波
- 批准号:
1029773 - 财政年份:2010
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Minimal Surfaces and Mean Curvature Flow
最小曲面和平均曲率流
- 批准号:
0707126 - 财政年份:2007
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
CAREER: Exploring Authentic Inquiry: Factors that Influence Students
职业:探索真实探究:影响学生的因素
- 批准号:
9984612 - 财政年份:2000
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8553231 - 财政年份:1986
- 资助金额:
$ 23.5万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8114162 - 财政年份:1981
- 资助金额:
$ 23.5万 - 项目类别:
Fellowship Award
相似海外基金
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Minimal surfaces and singularities of mean curvature flow
平均曲率流的最小曲面和奇点
- 批准号:
DE210100535 - 财政年份:2021
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Early Career Researcher Award
Global properties of minimal surfaces in Euclidean space and zero mean curvature surfaces in Minkowski space
欧几里得空间中最小曲面和闵可夫斯基空间中零平均曲率曲面的全局性质
- 批准号:
17K05219 - 财政年份:2017
- 资助金额:
$ 23.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mean curvature flow, minimal submanifolds and Willmore surfaces
平均曲率流、最小子流形和 Willmore 曲面
- 批准号:
203199-2011 - 财政年份:2015
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
- 批准号:
EP/M024512/1 - 财政年份:2015
- 资助金额:
$ 23.5万 - 项目类别:
Research Grant
Mean curvature flow, minimal submanifolds and Willmore surfaces
平均曲率流、最小子流形和 Willmore 曲面
- 批准号:
203199-2011 - 财政年份:2014
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Mean curvature flow, minimal surfaces and Ricci flow
平均曲率流、最小曲面和里奇流
- 批准号:
1311795 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Mean curvature flow, minimal submanifolds and Willmore surfaces
平均曲率流、最小子流形和 Willmore 曲面
- 批准号:
203199-2011 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1309236 - 财政年份:2013
- 资助金额:
$ 23.5万 - 项目类别:
Standard Grant
Mean curvature flow, minimal submanifolds and Willmore surfaces
平均曲率流、最小子流形和 Willmore 曲面
- 批准号:
203199-2011 - 财政年份:2012
- 资助金额:
$ 23.5万 - 项目类别:
Discovery Grants Program - Individual