Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
基本信息
- 批准号:1711798
- 负责人:
- 金额:$ 14.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Confining light to region of hundreds or even tens of micrometers in high-quality optical microresonators, one can achieve a significant concentration of electromagnetic energy. The confined light becomes much more sensitive to environmental changes, exerts an amplified mechanical force, and can generate significant nonlinear effects even at small light intensities. For this reason, optical microresonators are being actively studied in the context of optical cooling or amplification of mechanical motion, for precision metrology, lasing, ultrasensitive biosensing and other areas. Confinement of light is usually achieved using solid materials, but this project proposes to achieve it using liquid microstructures. The transition to liquid droplet creates significant challenges, but also opens up new opportunities. Firstly, mechanical softness of droplets makes them more receptive than solid materials to the light-induced forces resulting in many orders of magnitude larger mechanical responses and hence increased efficiency of optical cooling or heating. Secondly, liquid droplets allow access to the resonator's interior regions. Because electromagnetic field is orders of magnitude larger inside than outside of the resonator, one can expect the corresponding increase in sensitivity of biosensors based on droplet resonators by several orders of magnitude. Thirdly, use of liquid droplets allows realizing a novel class of photonic molecules with extra strong optical bonds based on droplet-in-droplet structures, in which one or more smaller droplets are encapsulated in a larger droplet. Overall, the objective of this project is to demonstrate the transformative potential of liquid droplet resonators in the fields of optical cooling, lasing, sensing and metrology. The interdisciplinary nature of the project, which includes physicists, and electrical and mechanical engineers, will ensure that graduate and undergraduate students will be exposed to the culture and methodology of different disciplines. In addition, the project will build connections between American and Israeli researchers and students and strengthen the collaboration between American universities participating in the project and Technion, Israel's premiere engineering school. The support for this project is provided within the collaborative NSF-BSF (Binational US-IL Science Foundation) program with participation of the Israel team financed by BSF.This project merges the fields of microfluidics and optical whispering-gallery- mode resonators by proposing the study of the optical and optomechanical properties of novel photonic structures composed of fluid droplets. The mechanical softness of liquid droplets combined with their versatility and tunability will allow the principal investigators to study novel optical and optomechanical effects such as optical cooling of capillary waves, topological energy transfer in the vicinity of exceptional points, and others. The international multidisciplinary team formed for this project will exploit state-of-the-art microfluidic technologies to fabricate different structures of droplets, with each droplet serving as a high-quality photonic resonator. Numerical simulation and theoretical models will be developed to understand the physics associated with the novel structures developed in the project. Experimentalists working on the project will carry out optical characterization of the proposed structures and develop in-depth understanding of their novel optical and optomechanical effects. This research will advance the field of optofluidics by applying state-of-the-art 3D printing technologies to the fabrication of novel microfluidic devices and generation of complex structures of microdroplets. Study of novel photonic structures with unique properties will also open new directions in the field of optical whispering-gallery-mode resonators. The general field of computational electrodynamics will also benefit from this work by taking the T-matrix formalism well outside its nominal domain and applying it to the modes of optically coupled complex structures of liquid droplets.
在高质量的光学微谐振器中,将光限制在数百甚至数十微米的区域内,可以实现电磁能量的显著集中。受限光对环境变化变得更加敏感,施加放大的机械力,并且即使在小的光强度下也可以产生显著的非线性效应。出于这个原因,光学微谐振器正在积极研究的背景下,光学冷却或放大的机械运动,精密计量,激光,超灵敏的生物传感和其他领域。光的限制通常使用固体材料来实现,但该项目建议使用液体微结构来实现。向液滴的转变带来了重大挑战,但也带来了新的机遇。首先,液滴的机械柔软性使它们比固体材料更容易接受光诱导的力,导致许多数量级的更大的机械响应,因此提高了光学冷却或加热的效率。其次,液滴允许进入谐振器的内部区域。由于谐振器内部的电磁场比谐振器外部大几个数量级,因此可以预期基于液滴谐振器的生物传感器的灵敏度会相应增加几个数量级。第三,液滴的使用允许实现基于液滴中液滴结构的具有超强光学键的新型光子分子,其中一个或多个较小的液滴被封装在较大的液滴中。总体而言,该项目的目标是展示液滴谐振器在光学冷却,激光,传感和计量领域的变革潜力。该项目的跨学科性质,其中包括物理学家,电气和机械工程师,将确保研究生和本科生将接触到不同学科的文化和方法。此外,该项目还将在美国和以色列的研究人员和学生之间建立联系,并加强参与该项目的美国大学与以色列一流工程学院Technion之间的合作。该项目的支持是由BSF资助的以色列团队参与的NSF-BSF(美国-IL两国科学基金会)合作计划提供的。该项目通过提出对由流体液滴组成的新型光子结构的光学和光机械特性的研究,将微流体和光学回音壁模式谐振器领域融合在一起。液滴的机械柔软性与其多功能性和可调性相结合,将使主要研究人员能够研究新的光学和光机械效应,如毛细波的光学冷却,异常点附近的拓扑能量转移等。为该项目组建的国际多学科团队将利用最先进的微流体技术来制造不同结构的液滴,每个液滴都可以作为高质量的光子谐振器。将开发数值模拟和理论模型,以了解与该项目中开发的新结构相关的物理学。参与该项目的实验学家将对拟议结构进行光学表征,并深入了解其新颖的光学和光学机械效应。这项研究将通过将最先进的3D打印技术应用于新型微流体设备的制造和微滴复杂结构的生成来推进光流体领域。具有独特性能的新型光子结构的研究也将为回音壁模谐振器的研究开辟新的方向。计算电动力学的一般领域也将受益于这项工作,采取T-矩阵形式主义以及其名义域之外,并将其应用到液滴的光耦合复杂结构的模式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pressure of a viscous droplet squeezing through a short circular constriction: An analytical model
- DOI:10.1063/1.5045495
- 发表时间:2018-10-01
- 期刊:
- 影响因子:4.6
- 作者:Zhang, Zhifeng;Drapaca, Corina;Xu, Jie
- 通讯作者:Xu, Jie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Xu其他文献
Basic principles and optical system design of 17.48 keV high-throughput modified Wolter x-ray microscope
17.48 keV高通量改良Wolter X射线显微镜基本原理及光学系统设计
- DOI:
10.1063/5.0105015 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Yaran Li;Wenjie Li;Liang Chen;Huanzhen Ma;Xinye Xu;Jie Xu;Xin Wang;Baozhong Mu - 通讯作者:
Baozhong Mu
A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: a case study in Lake Hongze
基于OLCI数据推导内陆浑浊水体粒径分布斜率的半解析算法——以洪泽湖为例
- DOI:
10.1016/j.envpol.2020.116288 - 发表时间:
2020 - 期刊:
- 影响因子:8.9
- 作者:
Shaohua Lei;Jie Xu;Yunmei Li;Lin Li;Heng Lyu;Ge Liu;Yu Chen - 通讯作者:
Yu Chen
Chinese Researchers, Scholarly Communication Behavious, and Trust
中国研究者、学术交流行为和信任
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
David Nicholas;Jie Xu;Lifang Xu;Jing Su;Anthony Watkinson - 通讯作者:
Anthony Watkinson
Proton-assisted growth of ultra-flat graphene films
质子辅助生长超平坦石墨烯薄膜
- DOI:
10.1038/s41586-019-1870-3 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Guowen Yuan;Dongjing Lin;Yong Wang;Xianlei Huang;Wang Chen;Xuedong Xie;Junyu Zong;Qian-Qian Yuan;Hang Zheng;Di Wang;Jie Xu;Shao-Chun Li;Yi Zhang;Jian Sun;Xiaoxiang Xi;Libo Gao - 通讯作者:
Libo Gao
A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid
一种简便有效的提高均相路易斯酸催化葡萄糖化学催化转化乳酸甲酯选择性的方法
- DOI:
10.1016/j.molcata.2014.01.017 - 发表时间:
2014-07 - 期刊:
- 影响因子:0
- 作者:
Xiaomei Yang;Yunlai Su;Tiangliang Lu;Jie Xu - 通讯作者:
Jie Xu
Jie Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Xu', 18)}}的其他基金
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
- 批准号:
2311021 - 财政年份:2023
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
- 批准号:
2228603 - 财政年份:2022
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
- 批准号:
2044991 - 财政年份:2021
- 资助金额:
$ 14.81万 - 项目类别:
Continuing Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033681 - 财政年份:2020
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029858 - 财政年份:2020
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
- 批准号:
2006630 - 财政年份:2020
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923145 - 财政年份:2019
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917295 - 财政年份:2019
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
- 批准号:
1462409 - 财政年份:2015
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 14.81万 - 项目类别:
Continuing Grant