Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
基本信息
- 批准号:2006630
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Edge devices, such as mobile phones, drones and robots, have been emerging as an increasingly more important platform for deep neural network (DNN) inference. For an edge device, selecting an optimal DNN model out of many possibilities is crucial for maximizing the user’s quality of experience (QoE), but this is significantly challenged by the high degree of heterogeneity in edge devices and constant-changing usage scenarios. The current practice commonly selects a single DNN model for many or all edge devices, which can only provide a satisfactory QoE for a small fraction of users at best. Alternatively, device-specific DNN model optimization is time-consuming and not scalable to a large diversity of edge devices. Moreover, the existing approaches focus on optimizing a certain objective metric for edge inference, which may not translate into improvement of the actual QoE for users. By leveraging the predictive power of machine learning and keeping users in a loop, this project proposes an automated and scalable device-level DNN model selection engine for QoE-optimal edge inference. Specifically, this project includes two thrusts: first, it exploits online learning to predict QoE for each edge device, automating deployment-stage DNN model selection; and second, it builds a runtime QoE predictor and automatically selects an optimal DNN model given runtime contextual information.This project represents an important departure from and an essential complement to the current practices in DNN model optimization. It can bring the benefits of DNN-enabled intelligence to many more resource-constrained edge devices with an optimal QoE. Additionally, it provides novel observations, insights and principles for edge inference, catalyzing the transformation of the design of DNN models into a new user-centric paradigm. This project also enables new opportunities to improve curriculum design and attract students, especially under-represented minorities, to engage in science, technology, engineering, and mathematics fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
边缘设备,如移动的手机、无人机和机器人,已经成为深度神经网络(DNN)推理越来越重要的平台。对于边缘设备来说,从众多可能性中选择最佳DNN模型对于最大化用户体验质量(QoE)至关重要,但这受到边缘设备高度异构性和不断变化的使用场景的严重挑战。目前的实践通常为许多或所有边缘设备选择单个DNN模型,这只能为一小部分用户提供令人满意的QoE。或者,特定于设备的DNN模型优化是耗时的,并且不能扩展到各种各样的边缘设备。此外,现有方法集中于优化用于边缘推断的特定客观度量,这可能不会转化为用户的实际QoE的改善。通过利用机器学习的预测能力并保持用户处于循环状态,该项目提出了一种自动化和可扩展的设备级DNN模型选择引擎,用于QoE最佳边缘推理。具体而言,该项目包括两个重点:首先,它利用在线学习来预测每个边缘设备的QoE,自动化部署阶段的DNN模型选择;其次,它构建了一个运行时QoE预测器,并根据运行时上下文信息自动选择最佳DNN模型。该项目代表了DNN模型优化的当前实践的重要偏离和重要补充。它可以为更多资源受限的边缘设备带来支持DNN的智能的好处,并提供最佳的QoE。此外,它还为边缘推理提供了新的观察、见解和原则,促进了DNN模型设计向以用户为中心的新范式的转变。该项目还为改进课程设计和吸引学生,特别是代表性不足的少数民族学生,参与科学,技术,工程和数学领域提供了新的机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving QoE of Deep Neural Network Inference on Edge Devices: A Bandit Approach
- DOI:10.1109/jiot.2022.3182728
- 发表时间:2022-11
- 期刊:
- 影响因子:10.6
- 作者:Bingqian Lu;Jianyi Yang;Jie Xu;Shaolei Ren
- 通讯作者:Bingqian Lu;Jianyi Yang;Jie Xu;Shaolei Ren
Automated Ensemble for Deep Learning Inference on Edge Computing Platforms
- DOI:10.1109/jiot.2021.3102945
- 发表时间:2022-03
- 期刊:
- 影响因子:10.6
- 作者:Yang Bai;Lixing Chen;M. Abdel-Mottaleb;Jie Xu
- 通讯作者:Yang Bai;Lixing Chen;M. Abdel-Mottaleb;Jie Xu
Adaptive Deep Neural Network Ensemble for Inference-as-a-Service on Edge Computing Platforms
用于边缘计算平台上的推理即服务的自适应深度神经网络集成
- DOI:10.1109/mass52906.2021.00013
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Bai, Yang;Chen, Lixing;Zhang, Letian;Abdel-Mottaleb, Mohamed;Xu, Jie
- 通讯作者:Xu, Jie
Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks
- DOI:10.1109/twc.2021.3113346
- 发表时间:2021-01
- 期刊:
- 影响因子:10.4
- 作者:Jie Xu;Heqiang Wang;Lixing Chen
- 通讯作者:Jie Xu;Heqiang Wang;Lixing Chen
NeuE: Automated Neural Network Ensembles for Edge Intelligence
- DOI:10.1109/tetc.2022.3214931
- 发表时间:2023-04
- 期刊:
- 影响因子:5.9
- 作者:Yang Bai;Lixing Chen;Jie Xu
- 通讯作者:Yang Bai;Lixing Chen;Jie Xu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Xu其他文献
Basic principles and optical system design of 17.48 keV high-throughput modified Wolter x-ray microscope
17.48 keV高通量改良Wolter X射线显微镜基本原理及光学系统设计
- DOI:
10.1063/5.0105015 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Yaran Li;Wenjie Li;Liang Chen;Huanzhen Ma;Xinye Xu;Jie Xu;Xin Wang;Baozhong Mu - 通讯作者:
Baozhong Mu
A semi-analytical algorithm for deriving the particle size distribution slope of turbid inland water based on OLCI data: a case study in Lake Hongze
基于OLCI数据推导内陆浑浊水体粒径分布斜率的半解析算法——以洪泽湖为例
- DOI:
10.1016/j.envpol.2020.116288 - 发表时间:
2020 - 期刊:
- 影响因子:8.9
- 作者:
Shaohua Lei;Jie Xu;Yunmei Li;Lin Li;Heng Lyu;Ge Liu;Yu Chen - 通讯作者:
Yu Chen
Chinese Researchers, Scholarly Communication Behavious, and Trust
中国研究者、学术交流行为和信任
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
David Nicholas;Jie Xu;Lifang Xu;Jing Su;Anthony Watkinson - 通讯作者:
Anthony Watkinson
Proton-assisted growth of ultra-flat graphene films
质子辅助生长超平坦石墨烯薄膜
- DOI:
10.1038/s41586-019-1870-3 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Guowen Yuan;Dongjing Lin;Yong Wang;Xianlei Huang;Wang Chen;Xuedong Xie;Junyu Zong;Qian-Qian Yuan;Hang Zheng;Di Wang;Jie Xu;Shao-Chun Li;Yi Zhang;Jian Sun;Xiaoxiang Xi;Libo Gao - 通讯作者:
Libo Gao
A facile and efficient method to improve the selectivity of methyl lactate in the chemocatalytic conversion of glucose catalyzed by homogeneous Lewis acid
一种简便有效的提高均相路易斯酸催化葡萄糖化学催化转化乳酸甲酯选择性的方法
- DOI:
10.1016/j.molcata.2014.01.017 - 发表时间:
2014-07 - 期刊:
- 影响因子:0
- 作者:
Xiaomei Yang;Yunlai Su;Tiangliang Lu;Jie Xu - 通讯作者:
Jie Xu
Jie Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Xu', 18)}}的其他基金
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
- 批准号:
2311021 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
- 批准号:
2319780 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
- 批准号:
2228603 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
- 批准号:
2044991 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning
CCSS:协作研究:无线联邦学习的资源配给框架
- 批准号:
2033681 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
- 批准号:
2029858 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
- 批准号:
1923145 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
- 批准号:
1917295 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
- 批准号:
1711798 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
- 批准号:
1462409 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant