CCSS: Collaborative Research: Towards a Resource Rationing Framework for Wireless Federated Learning

CCSS:协作研究:无线联邦学习的资源配给框架

基本信息

  • 批准号:
    2033681
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Federated learning (FL) is an emerging distributed machine learning paradigm that has many attractive properties. Despite the early studies that have demonstrated the potential of jointly optimizing communication and computation, existing designs are not tailored to the unique characteristics of FL. This project aims at developing a novel and rigorous resource allocation framework for wireless FL, which we term resource rationing to emphasize balancing resources over time so that the long-term impact to the final learning outcome is explicitly captured. Resource rationing is built on a rigorous theoretical foundation and guides the algorithmic development that solves specific resource allocation problems in both physical and Media Access Control (MAC) layers. Federated learning is an emerging new application for wireless communications, and this project has potential to advance the technology development of this new use case. Meanwhile, the theoretical foundation, algorithms, and validation will broadly advance the state of the art in machine learning, communication theory, and wireless networking. Developing such practical and impactful technology would also help maintain the leadership of the United States in wireless technologies as well as keep the pipeline to supply high-quality, well-trained, and innovative engineers.The project pursues synergistic activities for the successful design and implementation of resource rationing for wireless FL. Novel convergence analysis of FL with varying resource in each learning round is carried out, which establishes the general later-is-better principle. Guided by the theoretical foundation, the project further builds a comprehensive algorithmic framework for specific resource rationing designs, ranging from physical layer bit loading and adaptive coding and modulation to the MAC layer client selection, bandwidth allocation, and power control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习(FL)是一种新兴的分布式机器学习范式,具有许多有吸引力的特性。尽管早期的研究表明了共同优化沟通和计算的潜力,但现有设计并不是针对FL的独特特征量身定制的。该项目旨在为无线FL开发一个新颖而严格的资源分配框架,我们将资源配给以随着时间的推移而强调平衡资源,以便明确捕获对最终学习结果的长期影响。资源配给建立在严格的理论基础上,并指导算法开发,该算法开发解决了物理和媒体访问控制(MAC)层中特定资源分配问题。 Federated Learning是一个新兴的无线通信应用程序,该项目有潜力推进这种新用例的技术开发。同时,理论基础,算法和验证将在机器学习,通信理论和无线网络中广泛推进最新技术。开发这种实用和有影响力的技术还将有助于维持美国在无线技术方面的领导,并保持管道以提供高质量,培训和创新的工程师。该项目从事协同活动,以成功设计和实施用于无线无线FL的资源侵害。在每个学习回合中,对FL的新型收敛分析进行了不同的资源,从而确立了一般的后期原理。在理论基础的指导下,该项目进一步建立了针对特定资源配给设计的全面算法框架,从物理层的位加载和自适应编码和调制到MAC层客户的选择,带宽分配以及权力控制。该奖项反映了NSF的法定任务,并通过评估构成了构成群体的范围,并反映了该奖项的范围。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Client Selection and Bandwidth Allocation in Wireless Federated Learning Networks: A Long-Term Perspective
Resource Rationing for Wireless Federated Learning: Concept, Benefits, and Challenges
  • DOI:
    10.1109/mcom.001.2000744
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Cong Shen;Jie Xu;Sihui Zheng;Xiang Chen
  • 通讯作者:
    Cong Shen;Jie Xu;Sihui Zheng;Xiang Chen
Bandwidth Allocation for Multiple Federated Learning Services in Wireless Edge Networks
On Federated Learning with Energy Harvesting Clients
Seek Common While Shelving Differences: Orchestrating Deep Neural Networks for Edge Service Provisioning
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Xu其他文献

Acute myeloid leukemia with t(8;21)(q22;q22.1)/RUNX1-RUNX1T1 and KIT Exon 8 mutation is associated with characteristic mastocytosis and dismal outcomes.
具有 t(8;21)(q22;q22.1)/RUNX1-RUNX1T1 和 KIT 外显子 8 突变的急性髓系白血病与特征性肥大细胞增多症和不良结局相关。
鉄触媒によるアルキル化を伴う分子内環化反応を利用した含酸素複素環式化合物の合成
铁催化烷基化分子内环化反应合成含氧杂环化合物
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masayuki Iwasaki;Jie Xu;Yukari Tani;Liyan Fu;Yuichi Ikemoto;Yasuyuki Ura;Yasushi Nishihara;風尾靖喜,岩﨑真之,西原康師
  • 通讯作者:
    風尾靖喜,岩﨑真之,西原康師
Interactions between ultrasonographic cervical length and placenta accreta spectrum on severe postpartum hemorrhage in women with placenta previa
超声宫颈长度与植入性胎盘谱之间的相互作用对前置胎盘妇女严重产后出血的影响
Quantification of Racial Disparity on Urinary Tract Infection Recurrence and Treatment Resistance in Florida using Algorithmic Fairness Methods
使用算法公平方法量化佛罗里达州尿路感染复发和治疗耐药性的种族差异
Design Challenges and Guidelines for Persuasive Technologies that Facilitate Healthy Lifestyles.
促进健康生活方式的说服性技术的设计挑战和指南。

Jie Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Xu', 18)}}的其他基金

Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Elucidating Mechanisms of Metal Sulfide-Enabled Growth of Anoxygenic Photosynthetic Bacteria Using Transcriptomic, Aqueous/Surface Chemical, and Electron Microscopic Tools
使用转录组、水/表面化学和电子显微镜工具阐明金属硫化物促进不产氧光合细菌生长的机制
  • 批准号:
    2311021
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SAI-R: Strengthening American Electricity Infrastructure for an Electric Vehicle Future: An Energy Justice Approach
SAI-R:加强美国电力基础设施以实现电动汽车的未来:能源正义方法
  • 批准号:
    2228603
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAREER: Wireless InferNets: Enabling Collaborative Machine Learning Inference on the Network Path
职业:无线推理网:在网络路径上实现协作机器学习推理
  • 批准号:
    2044991
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: SWIFT: SMALL: Understanding and Combating Adversarial Spectrum Learning towards Spectrum-Efficient Wireless Networking
合作研究:SWIFT:SMALL:理解和对抗对抗性频谱学习以实现频谱高效的无线网络
  • 批准号:
    2029858
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Towards Automated and QoE-driven Machine Learning Model Selection for Edge Inference
合作研究:CNS 核心:小型:面向边缘推理的自动化和 QoE 驱动的机器学习模型选择
  • 批准号:
    2006630
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Power Grids Weather Resilience through Model-free Dimension Reduction and Stochastic Search for Optimal Hardening
合作研究:通过无模型降维和随机搜索优化强化来提高电网的耐候能力
  • 批准号:
    1923145
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards High-Throughput Label-Free Circulating Tumor Cell Separation using 3D Deterministic Dielectrophoresis (D-Cubed)
合作研究:利用 3D 确定性介电泳 (D-Cubed) 实现高通量无标记循环肿瘤细胞分离
  • 批准号:
    1917295
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/ENG/ECCS-BSF: Complex liquid droplet structures as new optical and optomechanical materials
合作研究:NSF/ENG/ECCS-BSF:复杂液滴结构作为新型光学和光机械材料
  • 批准号:
    1711798
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER-Dynamic Data: A New Scalable Paradigm for Optimal Resource Allocation in Dynamic Data Systems via Multi-Scale and Multi-Fidelity Simulation and Optimization
EAGER-动态数据:通过多尺度和多保真度仿真和优化实现动态数据系统中最佳资源分配的新可扩展范式
  • 批准号:
    1462409
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
  • 批准号:
    72302101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332172
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
  • 批准号:
    2401415
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: When RFID Meets AI for Occluded Body Skeletal Posture Capture in Smart Healthcare
合作研究:CCSS:当 RFID 与人工智能相遇,用于智能医疗保健中闭塞的身体骨骼姿势捕获
  • 批准号:
    2245607
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了