Data Analytics for Efficient STEM Assessment: Developing Equivalent Short Concept Inventories

用于高效 STEM 评估的数据分析:开发等效的短概念清单

基本信息

  • 批准号:
    1712238
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The use of validated concept inventories, which are sets of questions designed and tested to accurately probe student understanding of a particular field or topic, is an accepted method of assessing student learning. However, the use of concept inventories is often avoided by instructors because they take considerable class time to complete. This project seeks to streamline and revise existing concept inventories into shortened versions that retain their statistical power for student assessment. The project will develop a standard method to create multiple shortened concept inventories from established inventories currently used in STEM education. Generating shortened but relevant concept inventories will decrease the class time needed to employ these inventories and will also mitigate memorization effects that can occur when the same concept inventory is used to measure learning before and after a lesson is conducted. Results from this project will provide a powerful new method of assessing student learning.This three-year project to refine and apply short concept inventory creation methodology will result in shortened versions of four commonly used concept inventories - the Mechanics Baseline Test and the Brief Electricity and Magnetism Assessment (both from Physics), the Statics Concept Inventory (from Engineering), and the Biology Concept Inventory. Statistical analysis, item response theory, factor analysis, equating modeling, and discipline-specific experts will guide the creation process to help ensure equivalence to the original concept inventories and between the shortened versions. Randomized testing will produce data that allows for comparisons between new shortened concept inventories and the original full length tests to determine the equivalence of the multiple versions and the appropriate conversion models to translate scores between versions. Upon successful validation, the shortened concept inventories will be immediately ready to administer in relevant courses and the methodology will be applicable to other concept inventories by researchers across all STEM disciplines. This research will also produce baseline outcomes for implementation strategies and guide efforts to promote widespread use of shortened concept inventories. The methodology developed in this research will be carefully detailed, giving step by step instructions to apply to further concept inventories by other researchers. In addition, this research will help to inform future concept inventory development of short parallel concept inventories to make STEM learning assessment more accessible to all educators.
使用验证的概念清单是一种公认的评估学生学习情况的方法。验证概念清单是为准确了解学生对特定领域或主题的理解而设计和测试的一组问题。然而,教师通常避免使用概念清单,因为它们需要相当长的课堂时间才能完成。该项目旨在将现有的概念清单精简和修订为简化版本,以保留其对学生评估的统计能力。该项目将开发一种标准方法,从STEM教育中目前使用的已建立的清单中创建多个缩短的概念清单。生成缩短但相关的概念清单将减少使用这些清单所需的课堂时间,还将缓解在授课前后使用相同的概念清单来衡量学习时可能发生的记忆效应。这个项目的结果将为评估学生的学习提供一个强大的新方法。这个为期三年的项目旨在完善和应用简短的概念清单创建方法,将导致四个常用概念清单的缩短版本--力学基线测试和简要的电磁评估(都来自物理学),静态概念清单(来自工程学),以及生物概念清单。统计分析、项目反应理论、因素分析、等值建模和特定学科的专家将指导创建过程,以帮助确保与原始概念清单和缩短版本之间的等价性。随机测试将产生数据,以便对新的缩短概念清单和原来的全长测试进行比较,以确定多个版本的等价性和适当的转换模型,以便在不同版本之间转换分数。在成功验证后,缩短的概念清单将立即准备好在相关课程中管理,该方法将适用于所有STEM学科的研究人员的其他概念清单。这项研究还将产生执行战略的基线结果,并指导促进广泛使用缩短概念清单的努力。在这项研究中开发的方法论将被仔细地详述,给出一步一步的指导,以应用于其他研究人员的进一步的概念清单。此外,本研究将有助于为未来概念清单的发展提供信息,使STEM学习评估更容易为所有教育工作者所接受。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Han其他文献

Synthesis of a novel three-dimensional sponge-like microporous CdS film with high photoelectrochemical performance and stability
新型三维海绵状微孔CdS薄膜的合成,具有高光电化学性能和稳定性
  • DOI:
    10.1016/j.jelechem.2020.114524
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Chang Feng;Zhuoyuan Chen;Jiangping Jing;Mengmeng Sun;Jing Tian;Jing Han;Weibing Li;Li Ma
  • 通讯作者:
    Li Ma
Production of Λ-hypernuclei in A(p,K+)ΛB reactions
A(p,K+)ΛB 反应中产生 Λ-超核
  • DOI:
    10.1088/1674-1137/32/12/005
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Jing Han;Shen Peng;Jiang Huan
  • 通讯作者:
    Jiang Huan
Lossless-constraint Denoising based Auto-encoders
基于无损约束去噪的自动编码器
  • DOI:
    10.1016/j.image.2018.02.002
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jinsong Zhang;Yi Zhang;Lianfa Bai;Jing Han
  • 通讯作者:
    Jing Han
A beam-space method for Direction Of Arrival and power estimation by exploiting the sparsity
利用稀疏性进行到达方向和功率估计的波束空间方法
Pan-Genome-Wide Identification and Transcriptome-Wide Analysis of DREB Genes That Respond to Biotic and Abiotic Stresses in Cucumber
黄瓜响应生物和非生物胁迫的 DREB 基因的全基因组鉴定和全转录组分析
  • DOI:
    10.3390/agriculture12111879
  • 发表时间:
    2022-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Can Wang;Jing Han;Ting Wang;Chunhua Chen;Junyi Liu;Zhixuan Xu;Qingxia Zhang;Lina Wang;Zhonghai Ren
  • 通讯作者:
    Zhonghai Ren

Jing Han的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311597
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Efficient log data compression and analytics system
高效的日志数据压缩和分析系统
  • 批准号:
    570524-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Alliance Grants
Big data profiling: collecting data about data to support efficient and effective analytics
大数据分析:收集有关数据的数据以支持高效且有效的分析
  • 批准号:
    RGPIN-2017-04681
  • 财政年份:
    2022
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
EFFICIENT MACHINE LEARNING METHODS FOR BIG DATA ANALYTICS
用于大数据分析的高效机器学习方法
  • 批准号:
    RGPIN-2016-04855
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient log data compression and analytics system
高效的日志数据压缩和分析系统
  • 批准号:
    570524-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Alliance Grants
Big data profiling: collecting data about data to support efficient and effective analytics
大数据分析:收集有关数据的数据以支持高效且有效的分析
  • 批准号:
    RGPIN-2017-04681
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    2110259
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
EFFICIENT MACHINE LEARNING METHODS FOR BIG DATA ANALYTICS
用于大数据分析的高效机器学习方法
  • 批准号:
    RGPIN-2016-04855
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了