CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge

职业:计算感知网络优化,用于无线边缘的高效分布式数据分析

基本信息

  • 批准号:
    2110259
  • 负责人:
  • 金额:
    $ 52.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

In recent years, machine learning (ML) and artificial intelligence (AI) applications are quickly finding their ways into our everyday life. All of these applications generate and inject a massive volume of data into the network for a wide range of complex ML/AI data analytics tasks, including but not limited to the training and/or inferences in computer vision, natural language processing, recommendation systems, etc. However, most of the existing wireless network control and optimization algorithms rarely take the new characteristics of ML/AI data analytic traffic into considerations. Likewise, most ML/AI data analytics algorithms oversimplify the underlying wireless networks as "bit pipes" and ignore their complex networking and physical layer constraints, hence leading to poor overall data analytics efficiency. The overarching theme of this CAREER research program is to bridge the gap between the rapidly growing ML/AI data analytics demands and the existing networking and communication technologies. The principal investigator (PI) explore a cross-disciplinary understanding between wireless networking and data analytics through a unified research program, which consists of the development of tractable theoretical models, exploration of theoretical performance bounds and limits, and the development of low-complexity distributed algorithms and protocols that are easy to implement in practice.In this CAREER program, the PI will develop networking-computing co-designs to facilitate ML/AI data analytics with data and model parallelisms in wireless edge networks. The PI will focus on three complementary research thrusts, each of which addresses one key aspect in supporting distributed data analytics at a different protocol layer: (i) communication-efficient distributed optimization at the physical layer; (ii) joint-queueing-computing scheduling at the medium access control layer; and (iii) admission control and resource virtualization at the transport layer. Collectively, the results in this research contribute to a new direction of wireless network control and optimization theory and systems design. The proposed research will serve as a foundation of the next-generation wireless networking that supports a plethora of data analytics and ML/AI applications. Due to its unique scientific and engineering challenges, this research program encompasses strong and holistic expertise in mathematical modeling, optimization, control, queueing theory, stochastic analysis, as well as deep knowledge of ML/AI system operations in practice. The proposed research will support not only the networking, communications, control, and machine learning research communities, but also the general public, by developing new optimization technologies for substantially improved network and data analytics performances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,机器学习(ML)和人工智能(AI)应用正迅速进入我们的日常生活。所有这些应用程序生成并注入大量数据到网络中,用于各种复杂的ML/AI数据分析任务,包括但不限于计算机视觉、自然语言处理、推荐系统等方面的训练和/或推理。然而,现有的大多数无线网络控制和优化算法很少考虑ML/AI数据分析流量的新特点。同样,大多数ML/AI数据分析算法将底层无线网络过度简化为“位管道”,忽略了其复杂的网络和物理层约束,从而导致整体数据分析效率低下。这个CAREER研究项目的首要主题是弥合快速增长的ML/AI数据分析需求与现有网络和通信技术之间的差距。首席研究员(PI)通过统一的研究计划探索无线网络和数据分析之间的跨学科理解,该研究计划包括开发易于处理的理论模型,探索理论性能界限和限制,以及开发易于在实践中实现的低复杂性分布式算法和协议。在该CAREER项目中,PI将开发网络计算协同设计,以促进无线边缘网络中数据和模型并行的ML/AI数据分析。PI将专注于三个互补的研究重点,每个重点都解决了在不同协议层支持分布式数据分析的一个关键方面:(i)物理层的通信高效分布式优化;(ii)介质访问控制层联合排队计算调度;(三)传输层的准入控制和资源虚拟化。本文的研究成果为无线网络控制与优化理论和系统设计开辟了新的方向。拟议的研究将作为支持大量数据分析和ML/AI应用的下一代无线网络的基础。由于其独特的科学和工程挑战,该研究项目在数学建模,优化,控制,排队理论,随机分析以及ML/AI系统实际操作方面拥有强大而全面的专业知识。拟议的研究不仅将支持网络、通信、控制和机器学习研究社区,还将通过开发新的优化技术来大幅提高网络和数据分析性能,从而支持公众。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low Sample and Communication Complexities in Decentralized Learning: A Triple Hybrid Approach
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning," in Proc. NeurIPS, New Orleans, LA, Dec. 2022
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning,载于 Proc. NeurIPS,路易斯安那州新奥尔良,2022 年 12 月
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang, H.;Qiu, P.;Liu, J.
  • 通讯作者:
    Liu, J.
Federated Learning with Fair Worker Selection: A Multi-Round Submodular Maximization Approach
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
Adaptive Multi-Hierarchical signSGD for Communication-Efficient Distributed Optimization
用于通信高效分布式优化的自适应多层次符号SGD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jia Liu其他文献

span style=font-family:quot;Times New Romanquot;,quot;serifquot;;font-size:12pt;Polymer-derived yttrium silicate coatings on 2D C/SiC composites/span
二维 C/SiC 复合材料上聚合物衍生的硅酸钇涂层
[Clinical study on combination of acupuncture, cupping and medicine for treatment of fibromyalgia syndrome].
针、拔罐、药物联合治疗纤维肌痛综合征的临床研究[J].
kNN Research based on Multi-Source Query Points on Road Networks
基于路网多源查询点的kNN研究
Electrochemical and Plasmonic Photochemical Oxidation Processes of para-Aminothiophenol on a Nanostructured Gold Electrode
纳米结构金电极上对氨基苯硫酚的电化学和等离子体光化学氧化过程
  • DOI:
    10.1021/acs.jpcc.1c05928
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui-Yuan Peng;De-Yin Wu;Yuan-Hui Xiao;Huan-Huan Yu;Jia-Zheng Wang;Jian-De Lin;Rajkumar Devasenathipathy;Jia Liu;Pei-Hang Zou;Meng Zhang;Jian-Zhang Zhou;Zhong-Qun Tian
  • 通讯作者:
    Zhong-Qun Tian
Indirect Effects of Fluid Intelligence on Creative Aptitude Through Openness to Experience
流体智力通过开放体验对创造性能力的间接影响
  • DOI:
    10.1007/s12144-017-9633-5
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiqin Liu;Ling Liu;Zhencai Chen;Yiying Song;Jia Liu
  • 通讯作者:
    Jia Liu

Jia Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jia Liu', 18)}}的其他基金

RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
  • 批准号:
    2338987
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
  • 批准号:
    2239307
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
  • 批准号:
    2305729
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
  • 批准号:
    ES/W004860/1
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Fellowship
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
  • 批准号:
    2134689
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
  • 批准号:
    2140277
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
  • 批准号:
    2038603
  • 财政年份:
    2020
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
  • 批准号:
    2102233
  • 财政年份:
    2020
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
  • 批准号:
    1943226
  • 财政年份:
    2020
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
  • 批准号:
    2110252
  • 财政年份:
    2020
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant

相似海外基金

CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection
CC* Integration-Small:用于实时野火检测的网络感知边缘计算
  • 批准号:
    2346755
  • 财政年份:
    2024
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
FMitF: Track II: Bringing Verification-Aware Languages and Federated Authentication to Enable Secure Computing for Scientific Communities
FMITF:轨道 II:引入验证感知语言和联合身份验证,为科学界提供安全计算
  • 批准号:
    2319190
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
  • 批准号:
    2228983
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Small: Toolkits for Creating Interaction-powered Energy-aware Computing Systems
合作研究:HCC:小型:用于创建交互驱动的能源感知计算系统的工具包
  • 批准号:
    2228982
  • 财政年份:
    2023
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Standard Grant
CAREER: GPU Performance Portability for Volunteer Computing through Heterogeneity-aware Autotuning
职业:通过异构感知自动调整实现志愿计算的 GPU 性能可移植性
  • 批准号:
    2144384
  • 财政年份:
    2022
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Continuing Grant
Dynamic Context-Aware Service Composition, Brokerage and Monitoring in Service-Oriented Computing
面向服务计算中的动态上下文感知服务组合、代理和监控
  • 批准号:
    RGPIN-2018-05014
  • 财政年份:
    2022
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Discovery Grants Program - Individual
Energy Aware Mobile Cloud Computing
能源感知移动云计算
  • 批准号:
    RGPIN-2016-05773
  • 财政年份:
    2022
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Context-Aware Service Composition, Brokerage and Monitoring in Service-Oriented Computing
面向服务计算中的动态上下文感知服务组合、代理和监控
  • 批准号:
    RGPIN-2018-05014
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Discovery Grants Program - Individual
Energy Aware Mobile Cloud Computing
能源感知移动云计算
  • 批准号:
    RGPIN-2016-05773
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Discovery Grants Program - Individual
Heterogeneous computing platforms for resource-aware video and data analytics (HOPWARE)
用于资源感知视频和数据分析的异构计算平台 (HOPWARE)
  • 批准号:
    EP/V040863/1
  • 财政年份:
    2021
  • 资助金额:
    $ 52.41万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了