CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
基本信息
- 批准号:2110259
- 负责人:
- 金额:$ 52.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recent years, machine learning (ML) and artificial intelligence (AI) applications are quickly finding their ways into our everyday life. All of these applications generate and inject a massive volume of data into the network for a wide range of complex ML/AI data analytics tasks, including but not limited to the training and/or inferences in computer vision, natural language processing, recommendation systems, etc. However, most of the existing wireless network control and optimization algorithms rarely take the new characteristics of ML/AI data analytic traffic into considerations. Likewise, most ML/AI data analytics algorithms oversimplify the underlying wireless networks as "bit pipes" and ignore their complex networking and physical layer constraints, hence leading to poor overall data analytics efficiency. The overarching theme of this CAREER research program is to bridge the gap between the rapidly growing ML/AI data analytics demands and the existing networking and communication technologies. The principal investigator (PI) explore a cross-disciplinary understanding between wireless networking and data analytics through a unified research program, which consists of the development of tractable theoretical models, exploration of theoretical performance bounds and limits, and the development of low-complexity distributed algorithms and protocols that are easy to implement in practice.In this CAREER program, the PI will develop networking-computing co-designs to facilitate ML/AI data analytics with data and model parallelisms in wireless edge networks. The PI will focus on three complementary research thrusts, each of which addresses one key aspect in supporting distributed data analytics at a different protocol layer: (i) communication-efficient distributed optimization at the physical layer; (ii) joint-queueing-computing scheduling at the medium access control layer; and (iii) admission control and resource virtualization at the transport layer. Collectively, the results in this research contribute to a new direction of wireless network control and optimization theory and systems design. The proposed research will serve as a foundation of the next-generation wireless networking that supports a plethora of data analytics and ML/AI applications. Due to its unique scientific and engineering challenges, this research program encompasses strong and holistic expertise in mathematical modeling, optimization, control, queueing theory, stochastic analysis, as well as deep knowledge of ML/AI system operations in practice. The proposed research will support not only the networking, communications, control, and machine learning research communities, but also the general public, by developing new optimization technologies for substantially improved network and data analytics performances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,机器学习(ML)和人工智能(AI)应用程序正在迅速找到他们进入我们日常生活的方式。所有这些应用程序都会在网络中生成并注入大量数据,以完成各种复杂的ML/AI数据分析任务,包括但不限于计算机视觉,自然语言处理,推荐系统等的培训和/或推断。但是,大多数现有的无线网络控制和优化算法很少会非常罕见地对ML/AI Analgorizations进行了ML/AI数据分析的新特征。同样,大多数ML/AI数据分析算法都过度简化了基础无线网络,因为“位管”,忽略了它们复杂的网络和物理层约束,因此导致整体数据分析效率差。该职业研究计划的总体主题是弥合快速增长的ML/AI数据分析需求与现有网络和通信技术之间的差距。首席研究者(PI)通过统一的研究计划探索了无线网络和数据分析之间的跨学科理解,该计划包括开发可访问的理论模型,探索理论绩效界限和限制的理论绩效范围和限制,以及在实践中易于在实践中实施的低复杂性算法和协议的发展,这些算法和协议将易于在实践中实现。 ML/AI数据分析与无线边缘网络中的数据和模型并行性。 PI将重点关注三个互补的研究推力,每个互补的研究推力都介绍了在不同协议层支持分布式数据分析的一个关键方面:(i)物理层处的通信效率高效分布式优化; (ii)中型访问控制层处的联合征收计算计划; (iii)运输层的接收控制和资源虚拟化。总的来说,这项研究的结果为无线网络控制和优化理论和系统设计的新方向做出了贡献。拟议的研究将成为下一代无线网络的基础,该网络支持大量数据分析和ML/AI应用程序。由于其独特的科学和工程挑战,该研究计划涵盖了数学建模,优化,控制,排队理论,随机分析以及实践中ML/AI系统操作的深入了解。拟议的研究不仅将通过开发新的优化技术来实质上改善网络和数据分析性能,因此不仅将支持网络,通信,控制和机器学习研究社区,而且还将支持公众。本奖颁发奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low Sample and Communication Complexities in Decentralized Learning: A Triple Hybrid Approach
- DOI:10.1109/infocom42981.2021.9488686
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
- 通讯作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning," in Proc. NeurIPS, New Orleans, LA, Dec. 2022
Taming Fat-Tailed (“Heavier-Tailed” with Potentially Infinite Variance) Noise in Federated Learning,载于 Proc. NeurIPS,路易斯安那州新奥尔良,2022 年 12 月
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, H.;Qiu, P.;Liu, J.
- 通讯作者:Liu, J.
Federated Learning with Fair Worker Selection: A Multi-Round Submodular Maximization Approach
- DOI:10.1109/mass52906.2021.00033
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Fengjiao Li;Jia Liu;Bo Ji
- 通讯作者:Fengjiao Li;Jia Liu;Bo Ji
GT-STORM: Taming Sample, Communication, and Memory Complexities in Decentralized Non-Convex Learning
- DOI:10.1145/3466772.3467056
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
- 通讯作者:Xin Zhang;Jia Liu;Zhengyuan Zhu-;E. Bentley
Adaptive Multi-Hierarchical signSGD for Communication-Efficient Distributed Optimization
用于通信高效分布式优化的自适应多层次符号SGD
- DOI:10.1109/spawc48557.2020.9154256
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yang, Haibo;Zhang, Xin;Fang, Minghong;Liu, Jia
- 通讯作者:Liu, Jia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Liu其他文献
KNOWLEDGE FLOWS IN CHINA : A PATENT CITATIONS ANALYSIS Presented
中国的知识流动:专利引证分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jia Liu - 通讯作者:
Jia Liu
Aberrant peripheral immune responses in acute Kawasaki disease with single-cell sequencing
通过单细胞测序发现急性川崎病的异常外周免疫反应
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Zhen Wang;Lijian Xie;Sirui Song;Liqin Chen;Guang Li;Jia Liu;T. Xiao;H. Zhang;Yujuan Huang;Guohui Ding;Yixue Li;Min Huang - 通讯作者:
Min Huang
電力貯蔵装置を有する半導体変圧器の仮想同期機制御
带蓄电装置的半导体变压器虚拟同步机控制
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Mustafa Al-Tameemi;Jia Liu;Hassan Bevrani;and Toshifumi Ise;小谷駿介・劉佳・三浦友史・阪部茂一・伊瀬敏史;小谷駿介・三浦友史・伊瀬敏史;樋口順也・三浦友史;樋口順也・三浦友史;樋口順也・三浦友史 - 通讯作者:
樋口順也・三浦友史
Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air
空气中非共线飞秒灯丝相互作用的二维等离子体光栅
- DOI:
10.1063/1.3650709 - 发表时间:
2011-10 - 期刊:
- 影响因子:4
- 作者:
Jia Liu;Wenxue Li;Haifeng Pan;Heping Zeng - 通讯作者:
Heping Zeng
QAM Modulation Based on Lowest Energy Consumption in Passive CRFID
- DOI:
10.3103/s0146411623060044 - 发表时间:
2023-11 - 期刊:
- 影响因子:0.9
- 作者:
Jia Liu - 通讯作者:
Jia Liu
Jia Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Liu', 18)}}的其他基金
RAPID: DRL AI: A Career-Driven AI Educational Program in Smart Manufacturing for Underserved High-school Students in the Alabama Black Belt Region
RAPID:DRL AI:针对阿拉巴马州黑带地区服务不足的高中生的智能制造领域职业驱动型人工智能教育计划
- 批准号:
2338987 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CAREER: Manufacturing USA: Deep Learning to Understand Fatigue Performance and Processing Relationship of Complex Parts by Additive Manufacturing for High-consequence Applications
职业:美国制造:通过深度学习了解复杂零件的疲劳性能和加工关系,通过增材制造实现高后果应用
- 批准号:
2239307 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
ERASE-PFAS: Exploring efficient pilot-scale treatment of per- and polyfluoroalkyl substances and comingled chlorinated solvents in groundwater using magnetic nanomaterials
ERASE-PFAS:探索使用磁性纳米材料对地下水中的全氟烷基物质和多氟烷基物质以及混合氯化溶剂进行有效的中试规模处理
- 批准号:
2305729 - 财政年份:2023
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
FMSG: Cyber: Federated Deep Learning for Future Ubiquitous Distributed Additive Manufacturing
FMSG:网络:面向未来无处不在的分布式增材制造的联合深度学习
- 批准号:
2134689 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
Preparing to Care for a Culturally and Linguistically Diverse UK Patient Population: How Healthcare Students Develop Their Cultural Competence
准备照顾文化和语言多样化的英国患者群体:医疗保健学生如何发展他们的文化能力
- 批准号:
ES/W004860/1 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Fellowship
SpecEES: Toward Spectral and Energy Efficient Cross-Layer Designs for Millimeter-Wave-Based Massive MIMO Networks
SpecEES:面向基于毫米波的大规模 MIMO 网络的频谱和节能跨层设计
- 批准号:
2140277 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CPS: Medium: An AI-enabled Cyber-Physical-Biological System for Cardiac Organoid Maturation
CPS:中:用于心脏类器官成熟的人工智能网络物理生物系统
- 批准号:
2038603 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
NeTS: Small: Toward Optimal, Efficient, and Holistic Networking Design for Massive-MIMO Wireless Networks
NeTS:小型:面向大规模 MIMO 无线网络的优化、高效和整体网络设计
- 批准号:
2102233 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
1943226 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CIF: Small: Taming Convergence and Delay in Stochastic Network Optimization with Hessian Information
CIF:小:利用 Hessian 信息驯服随机网络优化中的收敛和延迟
- 批准号:
2110252 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Standard Grant
相似国自然基金
面向高性能计算的指令级自适应睿频加速芯片关键技术研究
- 批准号:62374100
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于天然序列库的天冬酰胺多肽连接酶计算进化及机理研究
- 批准号:32371324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高性能混凝土(UHPC)加固损伤RC拱的协同承载机理与计算理论研究
- 批准号:52378154
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交媒体依赖行为习得与干预的认知神经计算机制研究
- 批准号:32300905
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于网络化计算的自组织组网方法研究
- 批准号:62371368
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
CAREER: GPU Performance Portability for Volunteer Computing through Heterogeneity-aware Autotuning
职业:通过异构感知自动调整实现志愿计算的 GPU 性能可移植性
- 批准号:
2144384 - 财政年份:2022
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
Biology-aware machine learning methods for characterizing microbiome genotype and phenotype
用于表征微生物组基因型和表型的生物学感知机器学习方法
- 批准号:
10810437 - 财政年份:2021
- 资助金额:
$ 52.41万 - 项目类别:
CAREER: Computing-Aware Network Optimization for Efficient Distributed Data Analytics at the Wireless Edge
职业:计算感知网络优化,用于无线边缘的高效分布式数据分析
- 批准号:
1943226 - 财政年份:2020
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
1131889 - 财政年份:2011
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant
CAREER: Data-aware Distributed Computing for Enabling Large-scale Collaborative Science
职业:数据感知分布式计算支持大规模协作科学
- 批准号:
0846052 - 财政年份:2009
- 资助金额:
$ 52.41万 - 项目类别:
Continuing Grant